Quantum process

Time evolution of quantum systems

This is the current revision of this page, as edited by imported>Citation bot at 00:13, 2 May 2024 (Add: bibcode, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by LeapTorchGear | #UCB_webform 481/639). The present address (URL) is a permanent link to this version.

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In quantum mechanics, a quantum process is a somewhat ambiguous term which usually refers to the time evolution of an (open) quantum system. Under very general assumptions, a quantum process is described by the quantum operation formalism (also known as a quantum dynamical map), which is a linear, trace-preserving, and completely positive map from the set of density matrices to itself.

For instance, in quantum process tomography, the unknown quantum process is assumed to be a quantum operation.

However, not all quantum processes can be captured within the quantum operation formalism;[1][2] in principle, the density matrix of a quantum system can undergo completely arbitrary time evolution.

References

  1. ^ Pechukas, Philip (1994). "Reduced Dynamics Need Not Be Completely Positive". Physical Review Letters. 73 (8): 1060–1062. Bibcode:1994PhRvL..73.1060P. doi:10.1103/PhysRevLett.73.1060. ISSN 0031-9007. PMID 10057614.
  2. ^ Shaji, Anil; Sudarshan, E.C.G. (2005). "Who's afraid of not completely positive maps?". Physics Letters A. 341 (1–4). Elsevier BV: 48–54. Bibcode:2005PhLA..341...48S. doi:10.1016/j.physleta.2005.04.029. ISSN 0375-9601.