This is the current revision of this page, as edited by imported>Me, Myself, and I are Here at 05:55, 6 December 2023(cap). The present address (URL) is a permanent link to this version.
Revision as of 05:55, 6 December 2023 by imported>Me, Myself, and I are Here(cap)
Within mathematical finance, the intertemporal capital asset pricing model, or ICAPM, is an alternative to the CAPM provided by Robert Merton. It is a linear factor model with wealth as state variable that forecasts changes in the distribution of future returns or income.
In the ICAPM investors are solving lifetime consumption decisions when faced with more than one uncertainty. The main difference between ICAPM and standard CAPM is the additional state variables that acknowledge the fact that investors hedge against shortfalls in consumption or against changes in the future investment opportunity set.
Continuous time version
Merton[1] considers a continuous time market in equilibrium.
The state variable (X) follows a Brownian motion:
After some algebra[2]
, we have the following objective function:
where is the risk-free return.
First order conditions are:
In matrix form, we have:
where is the vector of expected returns, the covariance matrix of returns, a unity vector the covariance between returns and the state variable. The optimal weights are:
Notice that the intertemporal model provides the same weights of the CAPM. Expected returns can be expressed as follows:
where m is the market portfolio and h a portfolio to hedge the state variable.
Merton, R.C., (1973), An Intertemporal Capital Asset Pricing Model. Econometrica 41, Vol. 41, No. 5. (Sep., 1973), pp. 867–887
"Multifactor Portfolio Efficiency and Multifactor Asset Pricing" by Eugene F. Fama, (The Journal of Financial and Quantitative Analysis), Vol. 31, No. 4, Dec., 1996