CLRg property
In mathematics, the notion of “common limit in the range” property denoted by CLRg property[1][2][3] is a theorem that unifies, generalizes, and extends the contractive mappings in fuzzy metric spaces, where the range of the mappings does not necessarily need to be a closed subspace of a non-empty set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} .
Suppose Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} is a non-empty set, and is a distance metric; thus, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X, d)} is a metric space. Now suppose we have self mappings These mappings are said to fulfil CLRg property if
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{k \to \infty} f x_{k} = \lim_{k \to \infty} g x_{k} = gx,} for some Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in X.}
Next, we give some examples that satisfy the CLRg property.
Examples
Source:[1]
Example 1
Suppose Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X,d)} is a usual metric space, with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X=[0,\infty).} Now, if the mappings Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f,g: X \to X} are defined respectively as follows:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle fx = \frac{x}{4}}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle gx = \frac{3x}{4}}
for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\in X.} Now, if the following sequence Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{x_k\}=\{1/k\}} is considered. We can see that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{k\to \infty}fx_{k} = \lim_{k\to \infty}gx_{k} = g0 = 0, }
thus, the mappings Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} fulfilled the CLRg property.
Another example that shades more light to this CLRg property is given below
Example 2
Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X,d)} is a usual metric space, with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X=[0,\infty).} Now, if the mappings Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f,g: X \to X} are defined respectively as follows:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle fx = x+1}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle gx = 2x}
for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\in X.} Now, if the following sequence Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{x_k\}=\{1+1/k \}} is considered. We can easily see that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{k\to \infty}fx_{k} = \lim_{k\to \infty}gx_{k} = g1 = 2, }
hence, the mappings Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} fulfilled the CLRg property.
References
- ^ 1.0 1.1 Sintunavarat, Wutiphol; Kumam, Poom (August 14, 2011). "Common Fixed Point Theorems for a Pair of Weakly Compatible Mappings in Fuzzy Metric Spaces". Journal of Applied Mathematics. 2011: e637958. doi:10.1155/2011/637958.
- ^ MOHAMMAD, MDAD; BD, Pant; SUNNY, CHAUHAN (2012). "FIXED POINT THEOREMS IN MENGER SPACES USING THE $(CLR\_$\{$ST$\}$) $ PROPERTY AND APPLICATIONS". Journal of Nonlinear Analysis and Optimization: Theory \& Applications. 3: 225–237. doi:10.1186/1687-1812-2012-55.
- ^ P Agarwal, Ravi; K Bisht, Ravindra; Shahzad, Naseer (February 13, 2014). "A comparison of various noncommuting conditions in metric fixed point theory and their applications". Fixed Point Theory and Applications. 2014: 1–33. doi:10.1186/1687-1812-2014-38.