Cuntz algebra
In mathematics, the Cuntz algebra Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{O}_n } , named after Joachim Cuntz, is the universal C*-algebra generated by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} isometries of an infinite-dimensional Hilbert space Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}} satisfying certain relations.[1] These algebras were introduced as the first concrete examples of a separable infinite simple C*-algebra, meaning as a Hilbert space, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{O}_n } is isometric to the sequence space
and it has no nontrivial closed ideals. These algebras are fundamental to the study of simple infinite C*-algebras since any such algebra contains, for any given n, a subalgebra that has as quotient.
Definitions
Let n ≥ 2 and be a separable Hilbert space. Consider the C*-algebra generated by a set
of isometries (i.e. ) acting on satisfying
This universal C*-algebra is called the Cuntz algebra, denoted by .
A simple C*-algebra is said to be purely infinite if every hereditary C*-subalgebra of it is infinite. is a separable, simple, purely infinite C*-algebra. Any simple infinite C*-algebra contains a subalgebra that has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{O}_n} as a quotient.
Properties
Classification
The Cuntz algebras are pairwise non-isomorphic, i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{O}_n } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{O}_m } are non-isomorphic for n ≠ m. The K0 group of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{O}_n} is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Z}/(n-1)\mathbb{Z}} , the cyclic group of order n − 1. Since K0 is a functor, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{O}_n } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{O}_m } are non-isomorphic.
Relation between concrete C*-algebras and the universal C*-algebra
Theorem. The concrete C*-algebra Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{A}} is isomorphic to the universal C*-algebra generated by n generators s1... sn subject to relations si*si = 1 for all i and ∑ sisi* = 1.
The proof of the theorem hinges on the following fact: any C*-algebra generated by n isometries s1... sn with orthogonal ranges contains a copy of the UHF algebra Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}} type n∞. Namely Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}} is spanned by words of the form
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_{i_1}\cdots s_{i_k}s_{j_1}^* \cdots s_{j_k}^*, k \geq 0.}
The *-subalgebra Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}} , being approximately finite-dimensional, has a unique C*-norm. The subalgebra Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}} plays role of the space of Fourier coefficients for elements of the algebra. A key technical lemma, due to Cuntz, is that an element in the algebra is zero if and only if all its Fourier coefficients vanish. Using this, one can show that the quotient map from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{L}} to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{A}} is injective, which proves the theorem.
The UHF algebra has a non-unital subalgebra Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}'} that is canonically isomorphic to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}} itself: In the Mn stage of the direct system defining Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}} , consider the rank-1 projection e11, the matrix that is 1 in the upper left corner and zero elsewhere. Propagate this projection through the direct system. At the Mnk stage of the direct system, one has a rank nk − 1 projection. In the direct limit, this gives a projection P in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}} . The corner
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P \mathcal{F} P = \mathcal{F'}}
is isomorphic to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}} . The *-endomorphism Φ that maps Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}} onto Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}'} is implemented by the isometry s1, i.e. Φ(·) = s1(·)s1*. is in fact the crossed product of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}} with the endomorphism Φ.
Cuntz algebras to represent direct sums
The relations defining the Cuntz algebras align with the definition of the biproduct for preadditive categories. This similarity is made precise in the C*-category of unital *-endomorphisms over C*-algebras. The objects of this category are unital *-endomorphisms, and morphisms are the elements Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\in A} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a:\rho\to\sigma} if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\rho(b)=\sigma(b)a} for every Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b\in A} . A unital *-endomorphism Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho:A\to A} is the direct sum of endomorphisms Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_1, \sigma_2, ..., \sigma_n} if there are isometries satisfying the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{O}_n} relations and
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho(x) = \sum_{k=1}^n S_k\sigma_k(x)S_k^*, \forall x\in A.}
In this direct sum, the inclusion morphisms are Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_k:\sigma_k\to \rho} , and the projection morphisms are Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_k^*:\rho\to\sigma_k} .
Generalisations
Cuntz algebras have been generalised in many ways. Notable amongst which are the Cuntz–Krieger algebras, graph C*-algebras and k-graph C*-algebras.
Applied mathematics
In signal processing, a subband filter with exact reconstruction give rise to representations of a Cuntz algebra. The same filter also comes from the multiresolution analysis construction in wavelet theory.[2]
See also
References
- ^ Cuntz, Joachim (1977). "Simple $C^*$-algebras generated by isometries". Communications in Mathematical Physics. 57 (2): 173–185. ISSN 0010-3616.
- ^ Jørgensen, Palle E. T.; Treadway, Brian. Analysis and Probability: Wavelets, Signals, Fractals. Graduate Texts in Mathematics. Vol. 234. Springer-Verlag. ISBN 0-387-29519-4.