Bernoulli polynomials

From English Wikipedia @ Freddythechick
(Redirected from Euler polynomials)

Bernoulli polynomials

In mathematics, the Bernoulli polynomials, named after Jacob Bernoulli, combine the Bernoulli numbers and binomial coefficients. They are used for series expansion of functions, and with the Euler–MacLaurin formula.

These polynomials occur in the study of many special functions and, in particular, the Riemann zeta function and the Hurwitz zeta function. They are an Appell sequence (i.e. a Sheffer sequence for the ordinary derivative operator). For the Bernoulli polynomials, the number of crossings of the x-axis in the unit interval does not go up with the degree. In the limit of large degree, they approach, when appropriately scaled, the sine and cosine functions.

A similar set of polynomials, based on a generating function, is the family of Euler polynomials.

Representations

The Bernoulli polynomials Bn can be defined by a generating function. They also admit a variety of derived representations.

Generating functions

The generating function for the Bernoulli polynomials is

The generating function for the Euler polynomials is

Explicit formula

for n ≥ 0, where Bk are the Bernoulli numbers, and Ek are the Euler numbers.

Representation by a differential operator

The Bernoulli polynomials are also given by Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \ B_{n}(x)={\frac {D}{\ e^{D}-1\ }}\ x^{n}\ } where is differentiation with respect to x and the fraction is expanded as a formal power series. It follows that

cf. § Integrals below. By the same token, the Euler polynomials are given by

Representation by an integral operator

The Bernoulli polynomials are also the unique polynomials determined by

The integral transform

on polynomials f, simply amounts to
This can be used to produce the inversion formulae below.

Integral Recurrence

In,[1][2] it is deduced and proved that the Bernoulli polynomials can be obtained by the following integral recurrence

Another explicit formula

An explicit formula for the Bernoulli polynomials is given by

That is similar to the series expression for the Hurwitz zeta function in the complex plane. Indeed, there is the relationship

where is the Hurwitz zeta function. The latter generalizes the Bernoulli polynomials, allowing for non-integer values of n.

The inner sum may be understood to be the nth forward difference of Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x^{m},} that is,

where is the forward difference operator. Thus, one may write

This formula may be derived from an identity appearing above as follows. Since the forward difference operator Δ equals Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \Delta =e^{D}-1} where D is differentiation with respect to x, we have, from the Mercator series,

As long as this operates on an mth-degree polynomial such as one may let n go from 0 only up to m.

An integral representation for the Bernoulli polynomials is given by the Nörlund–Rice integral, which follows from the expression as a finite difference.

An explicit formula for the Euler polynomials is given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_n(x) = \sum_{k=0}^n \left[ \frac{1}{2^k}\sum_{\ell=0}^n (-1)^\ell {k \choose \ell}(x + \ell)^n \right] .}

The above follows analogously, using the fact that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{e^D + 1} = \frac{1}{1 + \tfrac12 \Delta} = \sum_{n = 0}^\infty \bigl( {-\tfrac{1}{2}} \Delta \bigr)^n .}

Sums of pth powers

Using either the above integral representation of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^n} or the identity Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_n(x + 1) - B_n(x) = nx^{n-1}} , we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^x k^p = \int_0^{x+1} B_p(t) \, dt = \frac{B_{p+1}(x+1)-B_{p+1}}{p+1} } (assuming 00 = 1).

Explicit expressions for low degrees

The first few Bernoulli polynomials are: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} B_0(x) & = 1, & B_4(x) & = x^4 - 2x^3 + x^2 - \tfrac{1}{30}, \\[4mu] B_1(x) & = x - \tfrac{1}{2}, & B_5(x) & = x^5 - \tfrac{5}{2}x^4 + \tfrac{5}{3}x^3 - \tfrac{1}{6}x, \\[4mu] B_2(x) & = x^2 - x + \tfrac{1}{6}, & B_6(x) & = x^6 - 3x^5 + \tfrac{5}{2}x^4 - \tfrac{1}{2}x^2 + \tfrac{1}{42}, \\[-2mu] B_3(x) & = x^3 - \tfrac{3}{2}x^2 + \tfrac{1}{2}x \vphantom\Big|, \qquad & &\ \,\, \vdots \end{align} }

The first few Euler polynomials are:

Maximum and minimum

At higher n the amount of variation in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_n(x)} between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 0} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 1} gets large. For instance, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{16}(0) = B_{16}(1) = {}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\tfrac{3617}{510} \approx -7.09,} but Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{16}\bigl(\tfrac12\bigr) = {}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tfrac{118518239}{3342336} \approx 7.09.} Lehmer (1940)[3] showed that the maximum value (Mn) of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_n(x)} between 0 and 1 obeys

unless n is 2 modulo 4, in which case Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_n = \frac{2\zeta (n)\,n!}{(2\pi)^n}} (where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \zeta(x)} is the Riemann zeta function), while the minimum (mn) obeys Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_n > \frac{ -2 n!}{(2\pi)^n}} unless n = 0 modulo 4 , in which case Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_n = \frac{-2 \zeta(n)\,n! }{(2\pi)^n}.}

These limits are quite close to the actual maximum and minimum, and Lehmer gives more accurate limits as well.

Differences and derivatives

The Bernoulli and Euler polynomials obey many relations from umbral calculus: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \Delta B_n(x) &= B_n(x+1)-B_n(x)=nx^{n-1}, \\[3mu] \Delta E_n(x) &= E_n(x+1)-E_n(x)=2(x^n-E_n(x)). \end{align}} (Δ is the forward difference operator). Also, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_n(x+1) + E_n(x) = 2x^n.} These polynomial sequences are Appell sequences: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} B_n'(x) &= n B_{n-1}(x), \\[3mu] E_n'(x) &= n E_{n-1}(x). \end{align}}

Translations

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} B_n(x+y) &= \sum_{k=0}^n {n \choose k} B_k(x) y^{n-k} \\[3mu] E_n(x+y) &= \sum_{k=0}^n {n \choose k} E_k(x) y^{n-k} \end{align}} These identities are also equivalent to saying that these polynomial sequences are Appell sequences. (Hermite polynomials are another example.)

Symmetries

Zhi-Wei Sun and Hao Pan [4] established the following surprising symmetry relation: If r + s + t = n and x + y + z = 1, then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r[s,t;x,y]_n+s[t,r;y,z]_n+t[r,s;z,x]_n=0,} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [s,t;x,y]_n=\sum_{k=0}^n(-1)^k{s \choose k}{t\choose {n-k}} B_{n-k}(x)B_k(y).}

Fourier series

The Fourier series of the Bernoulli polynomials is also a Dirichlet series, given by the expansion Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_n(x) = -\frac{n!}{(2\pi i)^n}\sum_{k\not=0 }\frac{e^{2\pi ikx}}{k^n}= -2 n! \sum_{k=1}^{\infty} \frac{\cos\left(2 k \pi x- \frac{n \pi} 2 \right)}{(2 k \pi)^n}.} Note the simple large n limit to suitably scaled trigonometric functions.

This is a special case of the analogous form for the Hurwitz zeta function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_n(x) = -\Gamma(n+1) \sum_{k=1}^\infty \frac{ \exp (2\pi ikx) + e^{i\pi n} \exp (2\pi ik(1-x)) } { (2\pi ik)^n }. }

This expansion is valid only for 0 ≤ x ≤ 1 when n ≥ 2 and is valid for 0 < x < 1 when n = 1.

The Fourier series of the Euler polynomials may also be calculated. Defining the functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} C_\nu(x) &= \sum_{k=0}^\infty \frac {\cos((2k+1)\pi x)} {(2k+1)^\nu} \\[3mu] S_\nu(x) &= \sum_{k=0}^\infty \frac {\sin((2k+1)\pi x)} {(2k+1)^\nu} \end{align}} for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu > 1} , the Euler polynomial has the Fourier series Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} C_{2n}(x) &= \frac{\left(-1\right)^n}{4(2n-1)!} \pi^{2n} E_{2n-1} (x) \\[1ex] S_{2n+1}(x) &= \frac{\left(-1\right)^n}{4(2n)!} \pi^{2n+1} E_{2n} (x). \end{align}} Note that the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_\nu} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_\nu} are odd and even, respectively:Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} C_\nu(x) &= -C_\nu(1-x) \\ S_\nu(x) &= S_\nu(1-x). \end{align}}

They are related to the Legendre chi function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi_\nu} as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} C_\nu(x) &= \operatorname{Re} \chi_\nu (e^{ix}) \\ S_\nu(x) &= \operatorname{Im} \chi_\nu (e^{ix}). \end{align}}

Inversion

The Bernoulli and Euler polynomials may be inverted to express the monomial in terms of the polynomials.

Specifically, evidently from the above section on integral operators, it follows that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^n = \frac {1}{n+1} \sum_{k=0}^n {n+1 \choose k} B_k (x)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^n = E_n (x) + \frac {1}{2} \sum_{k=0}^{n-1} {n \choose k} E_k (x).}

Relation to falling factorial

The Bernoulli polynomials may be expanded in terms of the falling factorial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x)_k} as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{n+1}(x) = B_{n+1} + \sum_{k=0}^n \frac{n+1}{k+1} \left\{ \begin{matrix} n \\ k \end{matrix} \right\} (x)_{k+1} } where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_n = B_n(0)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{ \begin{matrix} n \\ k \end{matrix} \right\} = S(n,k)} denotes the Stirling number of the second kind. The above may be inverted to express the falling factorial in terms of the Bernoulli polynomials: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x)_{n+1} = \sum_{k=0}^n \frac{n+1}{k+1} \left[ \begin{matrix} n \\ k \end{matrix} \right] \left(B_{k+1}(x) - B_{k+1} \right) } where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ \begin{matrix} n \\ k \end{matrix} \right] = s(n,k)} denotes the Stirling number of the first kind.

Multiplication theorems

The multiplication theorems were given by Joseph Ludwig Raabe in 1851:

For a natural number m≥1, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_n(mx)= m^{n-1} \sum_{k=0}^{m-1} B_n{\left(x+\frac{k}{m}\right)}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} E_n(mx) &= m^n \sum_{k=0}^{m-1} \left(-1\right)^k E_n{\left(x+\frac{k}{m}\right)} & \text{ for odd } m \\[1ex] E_n(mx) &= \frac{-2}{n+1} m^n \sum_{k=0}^{m-1} \left(-1\right)^k B_{n+1}{\left(x+\frac{k}{m}\right)} & \text{ for even } m \end{align}}

Integrals

Two definite integrals relating the Bernoulli and Euler polynomials to the Bernoulli and Euler numbers are:[5]

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^1 B_n(t) B_m(t)\,dt = (-1)^{n-1} \frac{m!\, n!}{(m+n)!} B_{n+m} \quad \text{for } m,n \geq 1 }
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^1 E_n(t) E_m(t)\,dt = (-1)^{n} 4 (2^{m+n+2}-1)\frac{m!\,n!}{(m+n+2)!} B_{n+m+2}}

Another integral formula states[6]

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{1}E_{n}\left( x +y\right)\log(\tan \frac{\pi}{2}x)\,dx= n! \sum_{k=1}^{\left\lfloor\frac {n+1}2\right\rfloor} \frac{(-1)^{k-1}}{ \pi^{2k}} \left( 2-2^{-2k} \right)\zeta(2k+1) \frac{y^ {n+1-2k}}{(n +1- 2k)!}}

with the special case for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0}

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{1}E_{2n-1}\left( x \right)\log(\tan \frac{\pi}{2}x)\,dx= \frac{(-1)^{n-1}(2n-1)!}{\pi^{2n}}\left( 2-2^{-2n} \right)\zeta(2n+1)}
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{1}B_{2n-1}\left( x \right)\log(\tan \frac{\pi}{2}x)\,dx= \frac{(-1)^{n-1}}{\pi^{2n}}\frac{2^{2n-2}}{(2n-1)!}\sum_{k=1}^{n}( 2^{2k+1}-1 )\zeta(2k+1)\zeta(2n-2k)}
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{1}E_{2n}\left( x \right)\log(\tan \frac{\pi}{2}x)\,dx=\int_0^{1}B_{2n}\left( x \right)\log(\tan \frac{\pi}{2}x)\,dx=0}
  • Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{0}^{1}{{{B}_{2n-1}}\left(x\right)\cot \left(\pi x\right)dx}={\frac {2\left(2n-1\right)!}{{{\left(-1\right)}^{n-1}}{{\left(2\pi \right)}^{2n-1}}}}\zeta \left(2n-1\right)}

Periodic Bernoulli polynomials

A periodic Bernoulli polynomial Pn(x) is a Bernoulli polynomial evaluated at the fractional part of the argument x. These functions are used to provide the remainder term in the Euler–Maclaurin formula relating sums to integrals. The first polynomial is a sawtooth function.

Strictly these functions are not polynomials at all and more properly should be termed the periodic Bernoulli functions, and P0(x) is not even a function, being the derivative of a sawtooth and so a Dirac comb.

The following properties are of interest, valid for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x } :

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_k(x)} is continuous for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k > 1 }
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_k'(x)} exists and is continuous for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k > 2 }
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P'_k(x) = k P_{k-1}(x)} for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k > 2 }

See also

References

  1. ^ Hurtado Benavides, Miguel Ángel. (2020). De las sumas de potencias a las sucesiones de Appell y su caracterización a través de funcionales. [Tesis de maestría]. Universidad Sergio Arboleda. https://repository.usergioarboleda.edu.co/handle/11232/174
  2. ^ Sergio A. Carrillo; Miguel Hurtado. Appell and Sheffer sequences: on their characterizations through functionals and examples. Comptes Rendus. Mathématique, Tome 359 (2021) no. 2, pp. 205-217. doi : 10.5802/crmath.172. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.172/
  3. ^ Lehmer, D.H. (1940). "On the maxima and minima of Bernoulli polynomials". American Mathematical Monthly. 47 (8): 533–538. doi:10.1080/00029890.1940.11991015.
  4. ^ Zhi-Wei Sun; Hao Pan (2006). "Identities concerning Bernoulli and Euler polynomials". Acta Arithmetica. 125 (1): 21–39. arXiv:math/0409035. Bibcode:2006AcAri.125...21S. doi:10.4064/aa125-1-3. S2CID 10841415.
  5. ^ Takashi Agoh & Karl Dilcher (2011). "Integrals of products of Bernoulli polynomials". Journal of Mathematical Analysis and Applications. 381: 10–16. doi:10.1016/j.jmaa.2011.03.061.
  6. ^ Elaissaoui, Lahoucine & Guennoun, Zine El Abidine (2017). "Evaluation of log-tangent integrals by series involving ζ(2n+1)". Integral Transforms and Special Functions. 28 (6): 460–475. arXiv:1611.01274. doi:10.1080/10652469.2017.1312366. S2CID 119132354.

External links