File:Erays.svg

This is a file from the Wikimedia Commons
From English Wikipedia @ Freddythechick

Original file(SVG file, nominally 1,000 × 500 pixels, file size: 612 KB)

Summary

Description
English: Polar coordinate system and mapping from the complement (exterior) of the closed unit disk to the complement of the filled Julia set for .
বাংলা: জটিল গতিবিদ্যায় একক বৃত্ত
Français : Uniformisation du complémentaire du segment .
Bahasa Indonesia: Lingkaran satuan dalam dinamika kompleks.
日本語: リーマン写像による単位円の像としての単連結ジュリア集合
Polski: Układ współrzędnych biegunowych oraz funkcja odwzorowująca dopełnienie dysku jednostkowego na dopełnienie zbioru Julia.
Date 4 November 2008 (original upload date)
Source Own work based on: Erays.png by Adam Majewski
Author Vectorization: Alhadis
Other versions
Source code
InfoField
Created using Maxima.
R_max: 5;
R_min: 1;
dR: R_max - R_min;
psi(w) := w+1/w;
NmbrOfRays: 10;
iMax: 100; /* number of points to draw */
GiveCirclePoint(t) := R*%e^(%i*t*2*%pi); /* gives point of unit circle for angle t in turns */
GiveWRayPoint(R) := R*%e^(%i*tRay*2*%pi); /* gives point of external ray for radius R and angle tRay in turns */ 

/* f_0 plane = W-plane */
/* Unit circle */
R: 1;
circle_angles: makelist(i/(10*iMax), i, 0, 10*iMax-1); /* more angles = more points */
CirclePoints: map(GiveCirclePoint, circle_angles);

/* External circles */
circle_radii: makelist(R_min+i, i, 1, dR);
WCirclesPoints: [];
for R in circle_radii do 
	WCirclesPoints: append(WCirclesPoints, map(GiveCirclePoint, circle_angles));

/* External W rays */
ray_radii: makelist(R_min+dR*i/iMax, i, 0, iMax);
ray_angles: makelist(i/NmbrOfRays, i, 0, NmbrOfRays-1);
WRaysPoints: [];
for tRay in ray_angles do 
	WRaysPoints: append(WRaysPoints, map(GiveWRayPoint, ray_radii));


/* f_c plane = Z plane = dynamic plane */
/* external Z rays */
ZRaysPoints: map(psi, WRaysPoints);

/* Julia set points */
JuliaPoints: map(psi, CirclePoints);
Equipotentials: map(psi, WCirclesPoints);


/* Mario Rodríguez Riotorto (http://www.telefonica.net/web2/biomates/maxima/gpdraw/index.html) */
load(draw);
draw(
	file_name = "erays",
	pic_width = 1000, 
	pic_height = 500,
	terminal = 'svg,
	columns = 2,
	gr2d(
		title = " unit circle with external rays & circles ",
		point_type = filled_circle,
		points_joined = true,
		point_size = 0.34,
		color = red,
		points(map(realpart, CirclePoints),map(imagpart, CirclePoints)),
		points_joined = false,
		color = black,
		points(map(realpart, WRaysPoints), map(imagpart, WRaysPoints)),
		points(map(realpart, WCirclesPoints), map(imagpart, WCirclesPoints))
	),
	gr2d(
		title = "Image under psi(w):=w+1/w; ",
		points_joined = true,
		point_type = filled_circle,
		point_size = 0.34,
		color = blue,
		points(map(realpart, JuliaPoints),map(imagpart, JuliaPoints)),
		points_joined = false,
		color = black,
		points(map(realpart, ZRaysPoints),map(imagpart, ZRaysPoints)),
		points(map(realpart, Equipotentials),map(imagpart, Equipotentials))
	) 
);

SVG development
InfoField
 
The SVG code is valid.
 
This vector image was created with Adobe Illustrator, and then manually edited.
This file is saved in human-editable plain text format. Any editing of the image or creation of any derivative work should be performed using a text editor. Please do not upload edits saved or exported with Inkscape or similar vector graphics editors, as well as with automated tools such as SVG Translate.
This file supersedes the file Erays.png. It is recommended to use this file rather than the other one.

Deutsch  English  español  français  magyar  Bahasa Indonesia  italiano  日本語  македонски  മലയാളം  Nederlands  polski  prūsiskan  português do Brasil  русский  slovenščina  svenska  中文(简体)  中文(繁體)  +/−

minor quality

Long description

Here are two diagrams:

  • on the left is dynamical plane for
  • on the right is dynamical plane for

On left diagram one can see:

Right diagram is image of left diagram under function (the Riemann map) which maps the complement (exterior) of the closed unit disk to the complement of the filled Julia set

For :

It is:

  • a simplest case for analysis,
  • only one case when formula for computing is known (explicit Riemann mapping).

maps [1]:

Licensing

w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
Attribution: Adam Majewski
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
  1. Peitgen, Heinz-Otto; Richter Peter (1986) The Beauty of Fractals, Heidelberg: Springer-Verlag ISBN: 0-387-15851-0.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

4 November 2008

image/svg+xml

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current21:35, 16 February 2023Thumbnail for version as of 21:35, 16 February 20231,000 × 500 (612 KB)wikimediacommons>AlhadisRecreated SVG using librsvg-compatible markup.

The following 2 pages use this file:

Metadata