File:Higman Sims Graph.svg

Size of this PNG preview of this SVG file: 600 × 600 pixels. Other resolutions: 240 × 240 pixels | 480 × 480 pixels | 768 × 768 pixels | 1,024 × 1,024 pixels | 2,048 × 2,048 pixels.
Original file (SVG file, nominally 800 × 800 pixels, file size: 62 KB)
![]() | This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionHigman Sims Graph.svg |
English: Higman Sims Graph drawing, based on the construction of Paul R. Hafner: "On the Graphs of Hoffman-Singleton and Higman-Sims", The Electronic Journal of combinatorics 11 (2004). |
Source | Own work |
Author | Claudio Rocchini |
Source Code
The dirty C++ source code (contains also some auto-checks):
/*********************************
* Drawing the Higman-Sims Graph
* (C) 2008 Claudio Rocchini
* CC-BY 3.0
*********************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <set>
#include <vector>
#include <map>
const double PI = 3.1415926535897932384626433832795;
static int Q( int x ) { return x*x; }
bool is_strong_regular( const int nv, bool MA[] ){
int i,j,k;
std::vector<int> adj(nv);
std::fill(adj.begin(),adj.end(),0);
for(k=0;k<nv*nv;++k) if(MA[k]) {
i = k%nv; j = k/nv;
if(i<j) { ++adj[i]; ++adj[j]; }
}
for(i=1;i<nv;++i) if(adj[0]!=adj[i]) {
printf("Error: different rank: %d, %d\n",adj[0],adj[i]);
return false;
}
printf("OK rank: %d\n",adj[0]);
int gni = -1; int gno = -1; // lambda mu
for(i=0;i<nv-1;++i)
for(j=i+1;j<nv;++j) {
int n = 0;
for(k=0;k<nv;++k) if(k!=i && k!=j)
if( MA[i*nv+k] && MA[j*nv+k] ) ++n;
if( MA[i*nv+j] ) {
if(gni==-1) gni = n;
else if(gni!=n ) {
printf("Error: different ni\n");
return false;
}
} else {
if(gno==-1) gno = n;
else if(gno!=n ) {
printf("Error: different no\n");
return false;
}
}
}
printf("OK l:%d m:%d\n",gni,gno);
return true;
}
int main( int argc, char * argv[] )
{
const int NV = 100;
static int tri[100][3]; // Z4*Z5*Z5
static bool MA[NV*NV]; static int CO[NV*NV];
int i,j,k,n;
n = 0;
for(k=0;k<5;++k)
for(j=0;j<5;++j)
for(i=0;i<4;++i) { tri[n][0] = i; tri[n][1] = j; tri[n][2] = k; ++n; }
printf("%d nodes\n",n);
std::fill(MA,MA+NV*NV,false);
std::fill(CO,CO+NV*NV,0 );
for(i=0;i<n;++i)
for(j=0;j<n;++j) if(i!=j) {
int * ti = tri[i];
int * tj = tri[j];
int t = 0;
if(ti[0]==0 && tj[0]==0 && ti[1]==tj[1] && ( (ti[2]-tj[2]+5)%5==1 || (ti[2]-tj[2]+5)%5==4 ) ) t |= 0x0001;
if(ti[0]==1 && tj[0]==1 && ti[1]==tj[1] && ( (ti[2]-tj[2]+5)%5==2 || (ti[2]-tj[2]+5)%5==3 ) ) t |= 0x0002;
if(ti[0]==2 && tj[0]==2 && ti[1]==tj[1] && ( (ti[2]-tj[2]+5)%5==1 || (ti[2]-tj[2]+5)%5==4 ) ) t |= 0x0004;
if(ti[0]==3 && tj[0]==3 && ti[1]==tj[1] && ( (ti[2]-tj[2]+5)%5==2 || (ti[2]-tj[2]+5)%5==3 ) ) t |= 0x0008;
if(ti[0]==0 && tj[0]==1 &&( ti[1]*tj[1] +tj[2]+5000)%5==ti[2] ) t |= 0x0010;
if(ti[0]==1 && tj[0]==2 && (2*Q(ti[1]-tj[1])+tj[2]+5000)%5==ti[2] ) t |= 0x0020;
if(ti[0]==3 && tj[0]==0 && ( Q(tj[1]-ti[1])+ti[2]+5000)%5==tj[2] ) t |= 0x0080;
if(ti[0]==2 && tj[0]==3 && (2*Q(ti[1])+3*(ti[1]*tj[1])-Q(tj[1])+tj[2]+5000)%5==ti[2] ) t |= 0x0040;
if(ti[0]==0 && tj[0]==2 && ( (3*Q(ti[1])+ti[1]*tj[1]+tj[2] +1 +5000)%5==ti[2] ||
(3*Q(ti[1])+ti[1]*tj[1]+tj[2] -1 +5000)%5==ti[2] ) ) t |= 0x0100;
if(ti[0]==1 && tj[0]==3 && ( ( Q(ti[1])-ti[1]*tj[1]+tj[2] +2 +5000)%5==ti[2] ||
( Q(ti[1])-ti[1]*tj[1]+tj[2] -2 +5000)%5==ti[2] ) ) t |= 0x0200;
if(t) {
MA[i+NV*j] = MA[j+NV*i] = true;
CO[i+NV*j] |= t; CO[j+NV*i] |= t;
}
}
std::map<int,int> stats;
for(i=0;i<NV*NV;++i) if(CO[i]) ++stats[CO[i]];
std::map<int,int>::iterator ii;
int ne = 0;
for(ii=stats.begin();ii!=stats.end();++ii)
{
printf("color %04X: %d\n",(*ii).first,(*ii).second/2);
ne += (*ii).second/2;
}
printf("TOTAL: %d arcs\n",ne);
is_strong_regular(100,MA); // check!
for(int v=0;v<2;++v){
const double SX = 800;
const double SY = v==0 ? 800 : 400;
const double B = 16;
const double R = v==0 ? 3 : 1;
char filename[256];
sprintf(filename,"c:\\temp\\higman_Sims%d.svg",v+1);
FILE * fp = fopen(filename,"w");
fprintf(fp,
"<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n"
"<svg\n"
"xmlns:svg=\"http://www.w3.org/2000/svg\"\n"
"xmlns=\"http://www.w3.org/2000/svg\"\n"
"version=\"1.0\"\n"
"width=\"%g\"\n"
"height=\"%g\"\n"
"id=\"HigmanSimsGraph\">\n"
,SX,SY
);
static double xx[NV];
static double yy[NV];
int i,j;
for(i=0;i<NV;++i){
const double a = 2*PI*i/NV;
const double r = v==0 ? (SX-2*B)/2: (SX-2*B)/11;
xx[i] = r*cos(a);
yy[i] = r*sin(a);
}
const char * colors[10] = {
"0d0d80",
"80590d",
"590d80",
"800d0d",
"0d5980",
"0d8059",
"59800d",
"0d800d",
"800d59",
"808080",
};
int tote = 0;
for(k=10;k>0;--k){
fprintf(fp,
"<g id=\"edge_layer%d\" style=\"stroke:#%s;stroke-width:%g;stroke-opacity:1.0;\">\n"
,k
,colors[k-1]
,v==0 ? 0.75 : 0.5
);
double ox = v==0 ? SX/2 : SX/2+(SX/5)*((k-1)%5-2);
double oy = v==0 ? SY/2 : SY/4+(SY/2)*((k-1)/5);
for(i=0;i<NV-1;++i)
for(j=i+1;j<NV;++j)
if(MA[i+NV*j] && CO[i+NV*j]==(1<<(k-1))){
fprintf(fp,
"<line x1=\"%5.1lf\" y1=\"%5.1lf\" x2=\"%5.1lf\" y2=\"%5.1lf\"/>\n"
,ox+xx[i],oy+yy[i]
,ox+xx[j],oy+yy[j]
);
++tote;
}
fprintf(fp, "</g>\n");
if(v==1 || k==1){
fprintf(fp,
"<g id=\"node_layer\" style=\"fill:#000000;stroke:#000000;stroke-width:1;stroke-opacity:1.0;\">\n"
);
for(i=0;i<NV;++i)
fprintf(fp,"<circle cx=\"%5.1lf\" cy=\"%5.1lf\" r=\"%5.1lf\" />\n"
,ox+xx[i],oy+yy[i],R
);
fprintf(fp, "</g>\n" );
}
}
if(v==0) printf("tot edges: %d\n",tote);
fprintf(fp, "</svg>\n" );
fclose(fp);
}
return 0;
}
Licensing
I, the copyright holder of this work, hereby publish it under the following licenses:
![]() |
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |


This file is licensed under the Creative Commons Attribution 3.0 Unported license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
You may select the license of your choice.
Captions
Add a one-line explanation of what this file represents
Items portrayed in this file
depicts
some value
image/svg+xml
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 13:23, 19 June 2008 | ![]() | 800 × 800 (62 KB) | wikimediacommons>Rocchini | {{Information |Description={{en|1=Higman Sims Graph drawing, based on the construction of Paul R. Hafner: "On the Graphs of Hoffman-Singleton and Higman-Sims", The Electronic Journal of combinatorics 11 (2004). }} |Source=Opera creata dall'uploader (ow |
File usage
The following page uses this file:
Retrieved from "https://enwiki.freddythechick.net/wiki/File:Higman_Sims_Graph.svg"