File:Julia set with 3 external rays.svg

Size of this PNG preview of this SVG file: 600 × 600 pixels. Other resolutions: 240 × 240 pixels | 480 × 480 pixels | 768 × 768 pixels | 1,024 × 1,024 pixels | 2,048 × 2,048 pixels | 1,000 × 1,000 pixels.
Original file (SVG file, nominally 1,000 × 1,000 pixels, file size: 1.5 MB)
![]() | This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionJulia set with 3 external rays.svg |
English: Julia set and external rays landing on fixed point |
Date | |
Source | Own work |
Author | Adam majewski |
Other versions |
|
Licensing
I, the copyright holder of this work, hereby publish it under the following licenses:



This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
![]() |
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
You may select the license of your choice.
File usage outside Commons
Compare with
- Program madel by Wolf Jung. See Main Menu, Help, Demo3, page 5[1]
-
external and internal rays
-
c=-0,123+0.745i
-
C=-0.12256+0.74486i; LCM/J
-
C-0.12+0.665*i; CPM/J
-
c=-0.11+0.65569999*i ; MIIM
-
c=-0.11+0.65569999*i; mIIM/J
-
c = −0,123 + 0.745i; Quaternion julia set. The "Douady Rabbit" julia set is visible in the cross section
-
Douady rabbit in an exponential family
What program does ?
Program draws to png file :
- repelling fixed point
and other fixed point
- superattracting 3-point cycle (limit cycle) :
( period is 3 )
- Julia set ( backward orbit of repelling fixed point
) using modified inverse iteration method (MIIM/J)
- 3 external rays of period 3 cycle :
, which land on fixed point
Algorithms
- drawing Julia set
- drawing external ray is based on c program by Curtis McMullen[2] and its Pascal version by Matjaz Erat[3]
Software needed
- Maxima CAS
- gnuplot for drawing ( creates png file )
Tested on versions :
- wxMaxima 0.7.6
- Maxima 5.16.3
- Lisp GNU Common Lisp (GCL) GCL 2.6.8 (aka GCL)
- Gnuplot Version 4.2 patchlevel 3
Source code
It is a batch file for Maxima CAS.
/*
batch file for Maxima CAS
*/
start:elapsed_run_time ();
kill(all);
remvalue(all);
/* --------------------------definitions of functions ------------------------------*/
f(z,c):=z*z+c; /* Complex quadratic map */
finverseplus(z,c):=sqrt(z-c);
finverseminus(z,c):=-sqrt(z-c);
/* */
fn(p, z, c) :=
if p=0 then z
elseif p=1 then f(z,c)
else f(fn(p-1, z, c),c);
/*Standard polynomial F_p \, which roots are periodic z-points of period p and its divisors */
F(p, z, c) := fn(p, z, c) - z ;
/* Function for computing reduced polynomial G_p\, which roots are periodic z-points of period p without its divisors*/
G[p,z,c]:=
block(
[f:divisors(p),
t:1], /* t is temporary variable = product of Gn for (divisors of p) other than p */
f:delete(p,f), /* delete p from list of divisors */
if p=1
then return(F(p,z,c)),
for i in f do
t:t*G[i,z,c],
g: F(p,z,c)/t,
return(ratsimp(g))
)$
GiveRoots(g):=
block(
[cc:bfallroots(expand(%i*g)=0)],
cc:map(rhs,cc),/* remove string "c=" */
cc:map('float,cc),
return(cc)
)$
/*
circle D={w:abs(w)=1 } where w=l(t,r)
t is angle in turns ; 1 turn = 360 degree = 2*Pi radians
r is a radius
*/
GiveC(angle,radius):=
(
[w], /* point of unit circle w:l(internalAngle,internalRadius); */
w:radius*%e^(%i*angle*2*%pi), /* point of circle */
float(rectform(w/2-w*w/4)) /* point in a period 1 component of Mandelbrot set */
)$
/* endcons the complex point to list in the format for draw package */
endconsD(point,list):=endcons([realpart(point),imagpart(point)],list)$
consD(point,list):=cons([realpart(point),imagpart(point)],list)$
GiveForwardOrbit(z0,c,iMax):=
/*
computes (without escape test)
forward orbit of point z0
and saves it to the list for draw package */
block(
[z,orbit,temp],
z:z0, /* first point = critical point z:0+0*%i */
orbit:[[realpart(z),imagpart(z)]],
for i:1 thru iMax step 1 do
( z:expand(f(z,c)),
orbit:endcons([realpart(z),imagpart(z)],orbit)),
return(orbit)
)$
/* gives 3 sublists from forward orbit of internal point */
GiveInternalRays(z0,c,iMax):= block
([a,b,d,z],
a:[],
b:[],
d:[],
z:z0,
for i:1 thru iMax step 1 do
(
a:consD(z,a),
z:f(z,c),
b:consD(z,b),
z:f(z,c),
d:consD(z,d),
z:f(z,c)
),
return([a,b,d])
)$
/* Gives points of backward orbit of z=repellor */
GiveBackwardOrbit(c,repellor,zxMin,zxMax,zyMin,zyMax,iXmax,iYmax):=
block(
hit_limit:4, /* proportional to number of details and time of drawing */
PixelWidth:(zxMax-zxMin)/iXmax,
PixelHeight:(zyMax-zyMin)/iYmax,
/* 2D array of hits pixels . Hit > 0 means that point was in orbit */
array(Hits,fixnum,iXmax,iYmax), /* no hits for beginning */
/* choose repeller z=repellor as a starting point */
stack:[repellor], /*save repellor in stack */
/* save first point to list of pixels */
x_y:[repellor],
/* reversed iteration of repellor */
loop,
/* pop = take one point from the stack */
z:last(stack),
stack:delete(z,stack),
/*inverse iteration - first preimage (root) */
z:finverseplus(z,c),
/* translate from world to screen coordinate */
iX:fix((realpart(z)-zxMin)/PixelWidth),
iY:fix((imagpart(z)-zyMin)/PixelHeight),
hit:Hits[iX,iY],
if hit<hit_limit
then
(
Hits[iX,iY]:hit+1,
stack:endcons(z,stack), /* push = add z at the end of list stack */
if hit=0 then x_y:endcons( z,x_y)
),
/*inverse iteration - second preimage (root) */
z:-z,
/* translate from world to screen coordinate, coversion to integer */
iX:fix((realpart(z)-zxMin)/PixelWidth),
iY:fix((imagpart(z)-zyMin)/PixelHeight),
hit:Hits[iX,iY],
if hit<hit_limit
then
(
Hits[iX,iY]:hit+1,
stack:endcons(z,stack), /* push = add z at the end of list stack to continue iteration */
if hit=0 then x_y:endcons( z,x_y)
),
if is(not emptyp(stack)) then go(loop),
return(x_y) /* list of pixels in the form [z1,z2] */
)$
/*-----------------------------------*/
Psi_n(r,t,z_last, Max_R):=
/* */
block(
[iMax:200,
iMax2:0],
/* ----- forward iteration of 2 points : z_last and w --------------*/
array(forward,iMax-1), /* forward orbit of z_last for comparison */
forward[0]:z_last,
i:0,
while cabs(forward[i])<Max_R and i< ( iMax-2) do
(
/* forward iteration of z in fc plane & save it to forward array */
forward[i+1]:forward[i]*forward[i] + c, /* z*z+c */
/* forward iteration of w in f0 plane : w(n+1):=wn^2 */
r:r*2, /* square radius = R^2=2^(2*r) because R=2^r */
t:mod(2*t,1),
/* */
iMax2:iMax2+1,
i:i+1
),
/* compute last w point ; it is equal to z-point */
R:2^r,
/* w:R*exp(2*%pi*%i*t), z:w, */
array(backward,iMax-1),
backward[iMax2]:rectform(ev(R*exp(2*%pi*%i*t))), /* use last w as a starting point for backward iteration to new z */
/* ----- backward iteration point z=w in fc plane --------------*/
for i:iMax2 step -1 thru 1 do
(
temp:float(rectform(sqrt(backward[i]-c))), /* sqrt(z-c) */
scalar_product:realpart(temp)*realpart(forward[i-1])+imagpart(temp)*imagpart(forward[i-1]),
if (0>scalar_product) then temp:-temp, /* choose preimage */
backward[i-1]:temp
),
return(backward[0])
)$
GiveRay(t,c):=
block(
[r],
/* range for drawing R=2^r ; as r tends to 0 R tends to 1 */
rMin:1E-10, /* 1E-4; rMin > 0 ; if rMin=0 then program has infinity loop !!!!! */
rMax:2,
caution:0.9330329915368074, /* r:r*caution ; it gives smaller r */
/* upper limit for iteration */
R_max:300,
/* */
zz:[], /* array for z points of ray in fc plane */
/* some w-points of external ray in f0 plane */
r:rMax,
while 2^r<R_max do r:2*r, /* find point w on ray near infinity (R>=R_max) in f0 plane */
R:2^r,
w:rectform(ev(R*exp(2*%pi*%i*t))),
z:w, /* near infinity z=w */
zz:cons(z,zz),
unless r<rMin do
( /* new smaller R */
r:r*caution,
R:2^r,
/* */
w:rectform(ev(R*exp(2*%pi*%i*t))),
/* */
last_z:z,
z:Psi_n(r,t,last_z,R_max), /* z=Psi_n(w) */
zz:cons(z,zz)
),
return(zz)
)$
/*
find symmetric point z3
z3 is the same line as z1 and z2 such z2 is between z1 and z3
*/
GiveNextPoint(z1,z2):=(
[x,y,dx,dy],
dx:realpart(z1)-realpart(z2),
dy:imagpart(z1)-imagpart(z2),
x:realpart(z2)-dx,
y:imagpart(z2)-dy,
x+y*%i
)$
compile(all)$
/* ----------------------- main ----------------------------------------------------*/
period:3$
/* external angle in turns */
/* resolution is proportional to number of details and time of drawing */
iX_max:1000;
iY_max:1000;
/* define z-plane ( dynamical ) */
ZxMin:-2.0;
ZxMax:2.0;
ZyMin:-2.0;
ZyMax:2.0;
/* limit cycle */
k:G[period,z,c]$ /* here c and z are symbols */
/* c:-0.12256+0.74486*%i; value by Milnor*/
c:0.74486176661974*%i-0.12256116687665; /* center of period 3 component */
/* find periodic z points */
s:GiveRoots(ev(k))$ /* ev moves value to c symbol here */
z0:s[1];
z1:rectform(float(f(z0,c)));
z2:rectform(float(f(z1,c)));
/* create 2 sublists : s1 and s2 from one list s */
s1:[z0,z1,z2]$
s2:delete(s[1],s);
for z in s2 do if abs(z-z1)<0.1 then s2:delete(z,s2) ;
for z in s2 do if abs(z-z2)<0.1 then s2:delete(z,s2) ;
/* compute fixed points */
beta:float(rectform((1+sqrt(1-4*c))/2)); /* compute repelling fixed point beta */
alfa:float(rectform((1-sqrt(1-4*c))/2)); /* other fixed point */
/* compute backward orbit of repelling fixed point */
xy: GiveBackwardOrbit(c,beta,ZxMin,ZxMax,ZyMin,ZyMax,iX_max,iY_max)$ /**/
/* compute ray points & save to zz list */
eRay1o7:GiveRay(1/7,c)$
eRay2o7:GiveRay(2/7,c)$
eRay4o7:GiveRay(4/7,c)$
/* time of computations */
time:fix(elapsed_run_time ()-start)$
/* draw it using draw package by */
load(draw);
path:"~/maxima/batch/julia/rabbit/"$ /* if empty then file is in a home dir */
/* if graphic file is empty (= 0 bytes) then run draw2d command again */
draw2d(
terminal = 'svg,
file_name = sconcat(path,"Julia_1_3g"),
user_preamble="set size square;set key bottom right",
title= concat("Dynamical plane for fc(z)=z*z+",string(c)),
dimensions = [iX_max, iY_max],
yrange = [ZyMin,ZyMax],
xrange = [ZxMin,ZyMax],
xlabel = "Z.re ",
ylabel = "Z.im",
point_type = filled_circle,
points_joined =true,
point_size = 0.2,
color = red,
points_joined =false,
color = black,
key = "backward orbit of z=beta",
points(map(realpart,xy),map(imagpart,xy)),
points_joined =true,
point_size = 0.2,
color = red,
key = "external ray 1/7",
points(map(realpart,eRay1o7),map(imagpart,eRay1o7)),
key = "external ray 2/7",
points(map(realpart,eRay2o7),map(imagpart,eRay2o7)),
key = "external ray 4/7",
points(map(realpart,eRay4o7),map(imagpart,eRay4o7)),
points_joined =false,
color = blue,
point_size = 1.4,
key = "repelling fixed point z= beta",
points([[realpart(beta),imagpart(beta)]]),
color = yellow,
key = "fixed point alfa and repelling period 3 cycle",
points([[realpart(alfa),imagpart(alfa)]]),
color = green,
key = sconcat("attracting period ",string(period)," cycle"),
points(map(realpart,s1),map(imagpart,s1))
);
Acknowledgements
This program is not only my work but was done with help of many great people (see references). Warm thanks (:-))
References
- ↑ | Program madel by Wolf Jung
- ↑ c program by Curtis McMullen (quad.c in Julia.tar.gz) archive copy at the Wayback Machine
- ↑ Quadratische Polynome by Matjaz Erat. Archived from the original on 2023-04-05. Retrieved on 2015-06-28.
I, the copyright holder of this work, hereby publish it under the following licenses:



This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
![]() |
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
You may select the license of your choice.
Captions
Add a one-line explanation of what this file represents
Items portrayed in this file
depicts
some value
28 June 2015
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 19:47, 2 March 2020 | ![]() | 1,000 × 1,000 (1.5 MB) | wikimediacommons>Soul windsurfer | removed repelling period 3 cycle, which is not at fixed point |
File usage
The following page uses this file:
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
Short title | Gnuplot |
---|---|
Image title | Produced by GNUPLOT 5.3 patchlevel 0 |
Width | 1000 |
Height | 1000 |