File:Singular-Value-Decomposition.svg

Original file (SVG file, nominally 512 × 463 pixels, file size: 12 KB)
![]() | This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionSingular-Value-Decomposition.svg |
English: Visual representation of a singular value decomposition (SVD) of the 2-dimensional real shearing
The upper left shows the unit disc in blue together with the two canonical unit vectors. The upper right shows the action of M on the unit disc: it distorts the circle to an ellipse. The SVD decomposes M into three simple transformations: a rotation V*, a scaling Σ along the coordinate axes and a second rotation U. The SVD reveals the lengths σ1 resp. σ2 of the semi-major axis resp. semi-minor axis of the ellispe; they are just the singular values which occur as diagonal elements of the scaling Σ. The rotation of the ellipse with respect to the coordinate axes is given by U. In this particular case the decomposition is as follows:
Deutsch: Veranschaulichung einer Singulärwertzerlegung (SVD) der 2-dimensionalen, reellen Scherung
Oben links sieht man den Einheitskreis in blau zusammen mit den Standard-Einheitsvektoren. Oben rechts sieht man das Bild des Einheitskreises unter M: der Kreis wird zu einer Ellipse verzogen. Die SVD zerlegt M in drei einfache Transformationen: eine Rotation V*, eine Dehnung Σ entlang der Koordinatenachsen und eine zweite Rotation U. Die Zerlegung lässt direkt die Längen σ1 bzw. σ2 der großen bzw. kleinen Halbachse der Ellipse erkennen; die Werte stehen in der Hauptdiagonalen von Σ. Die Rotation der Ellipse in Bezug auf das Koordinatensystem wird durch U beschrieben. In diesem speziellen Fall sieht die Singulärwertzerlegung aus wie folgt::
|
Date | |
Source | Own work |
Author | Georg-Johann |
SVG development InfoField | ![]() This diagram was created with a text editor. |
Licensing



- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
![]() |
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
Captions
Items portrayed in this file
depicts
28 August 2010
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 07:40, 31 August 2010 | ![]() | 512 × 463 (12 KB) | wikimediacommons>Georg-Johann | fix rotation, cleanup svg |
File usage
The following page uses this file:
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
Short title | Singular Value Decomposition |
---|---|
Image title |
This is the File http://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg Singular Value Decomposition of the 2-dimensional Shearing M = ( 1 1 ) ( 0 1 ) The Image shows: Upper Left: The unit Disc with the two canonical unit Vectors Upper Right: Unit Disc et al. transformed with M and signular Values sigma_1 and sigma_2 indicated Lower Left: The Action of V^* on the Unit disc. This is a just Rotation. Lower Right: The Action of Sigma * V^* on the Unit disc. Sigma scales in vertically and horizontally. The this special Case the singularValues are Phi and 1/Phi where Phi is the Golden Ratio. V^* is a (counter clockwise) Rotation by an angle alpha where alpha satisfies tan(alpha) = -Phi. U is a Rotation by beta with tan(beta) = Phi-1 |