Fuzzy classification is the process of grouping elements into fuzzy sets[1] whose membership functions are defined by the truth value of a fuzzy propositional function.[2][3][4] A fuzzy propositional function is analogous to[5] an expression containing one or more variables, such that when values are assigned to these variables, the expression becomes a fuzzy proposition.[6]

Accordingly, fuzzy classification is the process of grouping individuals having the same characteristics into a fuzzy set. A fuzzy classification corresponds to a membership function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \mu_{\tilde{C}} : \tilde{PF} \times U \to \tilde{T}} that indicates the degree to which an individual Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle i\in U} is a member of the fuzzy class Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \tilde{C}} , given its fuzzy classification predicate . Here, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \tilde{T}} is the set of fuzzy truth values, i.e., the unit interval Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle [0,1]} . The fuzzy classification predicate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \tilde{\Pi} _{\tilde{C}}(i)} corresponds to the fuzzy restriction "Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle i} is a member of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \tilde{C}} ".[6]

Classification

Intuitively, a class is a set that is defined by a certain property, and all objects having that property are elements of that class. The process of classification evaluates for a given set of objects whether they fulfill the classification property, and consequentially are a member of the corresponding class. However, this intuitive concept has some logical subtleties that need clarification.

A class logic[7] is a logical system which supports set construction using logical predicates with the class operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \{\cdot|\cdot\}} . A class

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C = \{ i | \Pi(i) \}}

is defined as a set C of individuals i satisfying a classification predicate Π which is a propositional function. The domain of the class operator { .| .} is the set of variables V and the set of propositional functions PF, and the range is the powerset of this universe P(U) that is, the set of possible subsets:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \{\cdot |\cdot \}:V\times PF\rightarrow P(U)}

Here is an explanation of the logical elements that constitute this definition:

  • An individual is a real object of reference.
  • A universe of discourse is the set of all possible individuals considered.
  • A variable Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle V: \rightarrow R} is a function which maps into a predefined range R without any given function arguments: a zero-place function.
  • A propositional function is "an expression containing one or more undetermined constituents, such that, when values are assigned to these constituents, the expression becomes a proposition".[5]

In contrast, classification is the process of grouping individuals having the same characteristics into a set. A classification corresponds to a membership function μ that indicates whether an individual is a member of a class, given its classification predicate Π.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu :PF \times U \rightarrow T }

The membership function maps from the set of propositional functions PF and the universe of discourse U into the set of truth values T. The membership μ of individual i in Class C is defined by the truth value τ of the classification predicate Π.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu C(i):= \tau (\Pi(i)) }

In classical logic the truth values are certain. Therefore a classification is crisp, since the truth values are either exactly true or exactly false.

See also

References

  1. ^ Zadeh, L. A. (1965). Fuzzy sets. Information and Control (8), pp. 338–353.
  2. ^ Zimmermann, H.-J. (2000). Practical Applications of Fuzzy Technologies. Springer.
  3. ^ Meier, A., Schindler, G., & Werro, N. (2008). Fuzzy classification on relational databases. In M. Galindo (Hrsg.), Handbook of research on fuzzy information processing in databases (Bd. II, S. 586-614). Information Science Reference.
  4. ^ Del Amo, A., Montero, J., & Cutello, V. (1999). On the principles of fuzzy classification. Proc. 18th North American Fuzzy Information Processing Society Annual Conf, (S. 675 – 679).
  5. ^ 5.0 5.1 Russel, B. (1919). Introduction to Mathematical Philosophy. London: George Allen & Unwin, Ltd., S. 155
  6. ^ 6.0 6.1 Zadeh, L. A. (1975). Calculus of fuzzy restrictions. In L. A. Zadeh, K.-S. Fu, K. Tanaka, & M. Shimura (Hrsg.), Fuzzy sets and Their Applications to Cognitive and Decision Processes. New York: Academic Press.
  7. ^ Glubrecht, J.-M., Oberschelp, A., & Todt, G. (1983). Klassenlogik. Mannheim/Wien/Zürich: Wissenschaftsverlag.