Hyperstructure
Hyperstructures are algebraic structures equipped with at least one multi-valued operation, called a hyperoperation. The largest classes of the hyperstructures are the ones called Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Hv} – structures.
A hyperoperation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\star)} on a nonempty set is a mapping from to the nonempty power set , meaning the set of all nonempty subsets of , i.e.
For we define
- and
is a semihypergroup if is an associative hyperoperation, i.e. for all
Furthermore, a hypergroup is a semihypergroup Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (H, \star ) } , where the reproduction axiom is valid, i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \star H = H \star a = H} for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \in H.}
References
- AHA (Algebraic Hyperstructures & Applications). A scientific group at Democritus University of Thrace, School of Education, Greece. aha.eled.duth.gr
- Applications of Hyperstructure Theory, Piergiulio Corsini, Violeta Leoreanu, Springer, 2003, ISBN 1-4020-1222-5, ISBN 978-1-4020-1222-8
- Functional Equations on Hypergroups, László, Székelyhidi, World Scientific Publishing, 2012, ISBN 978-981-4407-00-7