Formal definition Wedge product
The wedge product of ordinary, real-valued differential forms is defined using multiplication of real numbers. For a pair of Lie algebra–valued differential forms, the wedge product can be defined similarly, but substituting the bilinear Lie bracket operation , to obtain another Lie algebra–valued form. For a
g
{\displaystyle {\mathfrak {g}}}
-valued
p
{\displaystyle p}
-form
ω
{\displaystyle \omega }
and a
g
{\displaystyle {\mathfrak {g}}}
-valued
q
{\displaystyle q}
-form
η
{\displaystyle \eta }
, their wedge product
[
ω
∧
η
]
{\displaystyle [\omega \wedge \eta ]}
is given by
[
ω
∧
η
]
(
v
1
,
…
,
v
p
+
q
)
=
1
p
!
q
!
∑
σ
sgn
(
σ
)
[
ω
(
v
σ
(
1
)
,
…
,
v
σ
(
p
)
)
,
η
(
v
σ
(
p
+
1
)
,
…
,
v
σ
(
p
+
q
)
)
]
,
{\displaystyle [\omega \wedge \eta ](v_{1},\dotsc ,v_{p+q})={1 \over p!q!}\sum _{\sigma }\operatorname {sgn} (\sigma )[\omega (v_{\sigma (1)},\dotsc ,v_{\sigma (p)}),\eta (v_{\sigma (p+1)},\dotsc ,v_{\sigma (p+q)})],}
where the
v
i
{\displaystyle v_{i}}
's are tangent vectors. The notation is meant to indicate both operations involved. For example, if
ω
{\displaystyle \omega }
and
η
{\displaystyle \eta }
are Lie-algebra-valued one forms, then one has
[
ω
∧
η
]
(
v
1
,
v
2
)
=
[
ω
(
v
1
)
,
η
(
v
2
)
]
−
[
ω
(
v
2
)
,
η
(
v
1
)
]
.
{\displaystyle [\omega \wedge \eta ](v_{1},v_{2})=[\omega (v_{1}),\eta (v_{2})]-[\omega (v_{2}),\eta (v_{1})].}
The operation
[
ω
∧
η
]
{\displaystyle [\omega \wedge \eta ]}
can also be defined as the bilinear operation on
Ω
(
M
,
g
)
{\displaystyle \Omega (M,{\mathfrak {g}})}
satisfying
[
(
g
⊗
α
)
∧
(
h
⊗
β
)
]
=
[
g
,
h
]
⊗
(
α
∧
β
)
{\displaystyle [(g\otimes \alpha )\wedge (h\otimes \beta )]=[g,h]\otimes (\alpha \wedge \beta )}
for all
g
,
h
∈
g
{\displaystyle g,h\in {\mathfrak {g}}}
and
α
,
β
∈
Ω
(
M
,
R
)
{\displaystyle \alpha ,\beta \in \Omega (M,\mathbb {R} )}
.
Some authors have used the notation
[
ω
,
η
]
{\displaystyle [\omega ,\eta ]}
instead of
[
ω
∧
η
]
{\displaystyle [\omega \wedge \eta ]}
. The notation
[
ω
,
η
]
{\displaystyle [\omega ,\eta ]}
, which resembles a commutator , is justified by the fact that if the Lie algebra
g
{\displaystyle {\mathfrak {g}}}
is a matrix algebra then
[
ω
∧
η
]
{\displaystyle [\omega \wedge \eta ]}
is nothing but the graded commutator of
ω
{\displaystyle \omega }
and
η
{\displaystyle \eta }
, i. e. if
ω
∈
Ω
p
(
M
,
g
)
{\displaystyle \omega \in \Omega ^{p}(M,{\mathfrak {g}})}
and
η
∈
Ω
q
(
M
,
g
)
{\displaystyle \eta \in \Omega ^{q}(M,{\mathfrak {g}})}
then
[
ω
∧
η
]
=
ω
∧
η
−
(
−
1
)
p
q
η
∧
ω
,
{\displaystyle [\omega \wedge \eta ]=\omega \wedge \eta -(-1)^{pq}\eta \wedge \omega ,}
where
ω
∧
η
,
η
∧
ω
∈
Ω
p
+
q
(
M
,
g
)
{\displaystyle \omega \wedge \eta ,\ \eta \wedge \omega \in \Omega ^{p+q}(M,{\mathfrak {g}})}
are wedge products formed using the matrix multiplication on
g
{\displaystyle {\mathfrak {g}}}
.
Operations
Let
f
:
g
→
h
{\displaystyle f:{\mathfrak {g}}\to {\mathfrak {h}}}
be a Lie algebra homomorphism . If
φ
{\displaystyle \varphi }
is a
g
{\displaystyle {\mathfrak {g}}}
-valued form on a manifold, then
f
(
φ
)
{\displaystyle f(\varphi )}
is an
h
{\displaystyle {\mathfrak {h}}}
-valued form on the same manifold obtained by applying
f
{\displaystyle f}
to the values of
φ
{\displaystyle \varphi }
:
f
(
φ
)
(
v
1
,
…
,
v
k
)
=
f
(
φ
(
v
1
,
…
,
v
k
)
)
{\displaystyle f(\varphi )(v_{1},\dotsc ,v_{k})=f(\varphi (v_{1},\dotsc ,v_{k}))}
.
Similarly, if
f
{\displaystyle f}
is a multilinear functional on
∏
1
k
g
{\displaystyle \textstyle \prod _{1}^{k}{\mathfrak {g}}}
, then one puts[1]
f
(
φ
1
,
…
,
φ
k
)
(
v
1
,
…
,
v
q
)
=
1
q
!
∑
σ
sgn
(
σ
)
f
(
φ
1
(
v
σ
(
1
)
,
…
,
v
σ
(
q
1
)
)
,
…
,
φ
k
(
v
σ
(
q
−
q
k
+
1
)
,
…
,
v
σ
(
q
)
)
)
{\displaystyle f(\varphi _{1},\dotsc ,\varphi _{k})(v_{1},\dotsc ,v_{q})={1 \over q!}\sum _{\sigma }\operatorname {sgn} (\sigma )f(\varphi _{1}(v_{\sigma (1)},\dotsc ,v_{\sigma (q_{1})}),\dotsc ,\varphi _{k}(v_{\sigma (q-q_{k}+1)},\dotsc ,v_{\sigma (q)}))}
where
q
=
q
1
+
…
+
q
k
{\displaystyle q=q_{1}+\ldots +q_{k}}
and
φ
i
{\displaystyle \varphi _{i}}
are
g
{\displaystyle {\mathfrak {g}}}
-valued
q
i
{\displaystyle q_{i}}
-forms. Moreover, given a vector space
V
{\displaystyle V}
, the same formula can be used to define the
V
{\displaystyle V}
-valued form
f
(
φ
,
η
)
{\displaystyle f(\varphi ,\eta )}
when
f
:
g
×
V
→
V
{\displaystyle f:{\mathfrak {g}}\times V\to V}
is a multilinear map,
φ
{\displaystyle \varphi }
is a
g
{\displaystyle {\mathfrak {g}}}
-valued form and
η
{\displaystyle \eta }
is a
V
{\displaystyle V}
-valued form. Note that, when
f
(
[
x
,
y
]
,
z
)
=
f
(
x
,
f
(
y
,
z
)
)
−
f
(
y
,
f
(
x
,
z
)
)
,
(
∗
)
{\displaystyle f([x,y],z)=f(x,f(y,z))-f(y,f(x,z)){,}\qquad (*)}
giving
f
{\displaystyle f}
amounts to giving an action of
g
{\displaystyle {\mathfrak {g}}}
on
V
{\displaystyle V}
; i.e.,
f
{\displaystyle f}
determines the representation
ρ
:
g
→
V
,
ρ
(
x
)
y
=
f
(
x
,
y
)
{\displaystyle \rho :{\mathfrak {g}}\to V,\rho (x)y=f(x,y)}
and, conversely, any representation
ρ
{\displaystyle \rho }
determines
f
{\displaystyle f}
with the condition
(
∗
)
{\displaystyle (*)}
. For example, if
f
(
x
,
y
)
=
[
x
,
y
]
{\displaystyle f(x,y)=[x,y]}
(the bracket of
g
{\displaystyle {\mathfrak {g}}}
), then we recover the definition of
[
⋅
∧
⋅
]
{\displaystyle [\cdot \wedge \cdot ]}
given above, with
ρ
=
ad
{\displaystyle \rho =\operatorname {ad} }
, the adjoint representation . (Note the relation between
f
{\displaystyle f}
and
ρ
{\displaystyle \rho }
above is thus like the relation between a bracket and
ad
{\displaystyle \operatorname {ad} }
.)
In general, if
α
{\displaystyle \alpha }
is a
g
l
(
V
)
{\displaystyle {\mathfrak {gl}}(V)}
-valued
p
{\displaystyle p}
-form and
φ
{\displaystyle \varphi }
is a
V
{\displaystyle V}
-valued
q
{\displaystyle q}
-form, then one more commonly writes
α
⋅
φ
=
f
(
α
,
φ
)
{\displaystyle \alpha \cdot \varphi =f(\alpha ,\varphi )}
when
f
(
T
,
x
)
=
T
x
{\displaystyle f(T,x)=Tx}
. Explicitly,
(
α
⋅
ϕ
)
(
v
1
,
…
,
v
p
+
q
)
=
1
(
p
+
q
)
!
∑
σ
sgn
(
σ
)
α
(
v
σ
(
1
)
,
…
,
v
σ
(
p
)
)
ϕ
(
v
σ
(
p
+
1
)
,
…
,
v
σ
(
p
+
q
)
)
.
{\displaystyle (\alpha \cdot \phi )(v_{1},\dotsc ,v_{p+q})={1 \over (p+q)!}\sum _{\sigma }\operatorname {sgn} (\sigma )\alpha (v_{\sigma (1)},\dotsc ,v_{\sigma (p)})\phi (v_{\sigma (p+1)},\dotsc ,v_{\sigma (p+q)}).}
With this notation, one has for example:
ad
(
α
)
⋅
ϕ
=
[
α
∧
ϕ
]
{\displaystyle \operatorname {ad} (\alpha )\cdot \phi =[\alpha \wedge \phi ]}
.
Example: If
ω
{\displaystyle \omega }
is a
g
{\displaystyle {\mathfrak {g}}}
-valued one-form (for example, a connection form ),
ρ
{\displaystyle \rho }
a representation of
g
{\displaystyle {\mathfrak {g}}}
on a vector space
V
{\displaystyle V}
and
φ
{\displaystyle \varphi }
a
V
{\displaystyle V}
-valued zero-form, then
ρ
(
[
ω
∧
ω
]
)
⋅
φ
=
2
ρ
(
ω
)
⋅
(
ρ
(
ω
)
⋅
φ
)
.
{\displaystyle \rho ([\omega \wedge \omega ])\cdot \varphi =2\rho (\omega )\cdot (\rho (\omega )\cdot \varphi ).}
[2]
Forms with values in an adjoint bundle See also Notes
^ S. Kobayashi, K. Nomizu. Foundations of Differential Geometry (Wiley Classics Library) Volume 1, 2. Chapter XII, § 1.}}
^ Since
ρ
(
[
ω
∧
ω
]
)
(
v
,
w
)
=
ρ
(
[
ω
∧
ω
]
(
v
,
w
)
)
=
ρ
(
[
ω
(
v
)
,
ω
(
w
)
]
)
=
ρ
(
ω
(
v
)
)
ρ
(
ω
(
w
)
)
−
ρ
(
ω
(
w
)
)
ρ
(
ω
(
v
)
)
{\displaystyle \rho ([\omega \wedge \omega ])(v,w)=\rho ([\omega \wedge \omega ](v,w))=\rho ([\omega (v),\omega (w)])=\rho (\omega (v))\rho (\omega (w))-\rho (\omega (w))\rho (\omega (v))}
, we have that
(
ρ
(
[
ω
∧
ω
]
)
⋅
φ
)
(
v
,
w
)
=
1
2
(
ρ
(
[
ω
∧
ω
]
)
(
v
,
w
)
φ
−
ρ
(
[
ω
∧
ω
]
)
(
w
,
v
)
ϕ
)
{\displaystyle (\rho ([\omega \wedge \omega ])\cdot \varphi )(v,w)={1 \over 2}(\rho ([\omega \wedge \omega ])(v,w)\varphi -\rho ([\omega \wedge \omega ])(w,v)\phi )}
is
ρ
(
ω
(
v
)
)
ρ
(
ω
(
w
)
)
φ
−
ρ
(
ω
(
w
)
)
ρ
(
ω
(
v
)
)
ϕ
=
2
(
ρ
(
ω
)
⋅
(
ρ
(
ω
)
⋅
ϕ
)
)
(
v
,
w
)
.
{\displaystyle \rho (\omega (v))\rho (\omega (w))\varphi -\rho (\omega (w))\rho (\omega (v))\phi =2(\rho (\omega )\cdot (\rho (\omega )\cdot \phi ))(v,w).}
References External links