Local flatness
In topology, a branch of mathematics, local flatness is a smoothness condition that can be imposed on topological submanifolds. In the category of topological manifolds, locally flat submanifolds play a role similar to that of embedded submanifolds in the category of smooth manifolds. Violations of local flatness describe ridge networks and crumpled structures, with applications to materials processing and mechanical engineering.
Definition
Suppose a d dimensional manifold N is embedded into an n dimensional manifold M (where d < n). If we say N is locally flat at x if there is a neighborhood of x such that the topological pair Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (U, U\cap N)} is homeomorphic to the pair Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\mathbb{R}^n,\mathbb{R}^d)} , with the standard inclusion of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^d\to\mathbb{R}^n.} That is, there exists a homeomorphism Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U\to \mathbb{R}^n} such that the image of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U\cap N} coincides with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^d} . In diagrammatic terms, the following square must commute:
We call N locally flat in M if N is locally flat at every point. Similarly, a map Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi\colon N\to M} is called locally flat, even if it is not an embedding, if every x in N has a neighborhood U whose image Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi(U)} is locally flat in M.
In manifolds with boundary
The above definition assumes that, if M has a boundary, x is not a boundary point of M. If x is a point on the boundary of M then the definition is modified as follows. We say that N is locally flat at a boundary point x of M if there is a neighborhood Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U\subset M} of x such that the topological pair Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (U, U\cap N)} is homeomorphic to the pair Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\mathbb{R}^n_+,\mathbb{R}^d)} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^n_+} is a standard half-space and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^d} is included as a standard subspace of its boundary.
Consequences
Local flatness of an embedding implies strong properties not shared by all embeddings. Brown (1962) proved that if d = n − 1, then N is collared; that is, it has a neighborhood which is homeomorphic to N × [0,1] with N itself corresponding to N × 1/2 (if N is in the interior of M) or N × 0 (if N is in the boundary of M).
See also
References
- Brown, Morton (1962), Locally flat imbeddings [sic] of topological manifolds. Annals of Mathematics, Second series, Vol. 75 (1962), pp. 331–341.
- Mazur, Barry. On embeddings of spheres. Bulletin of the American Mathematical Society, Vol. 65 (1959), no. 2, pp. 59–65. http://projecteuclid.org/euclid.bams/1183523034.