Example

Normal distribution
Probability density function
The red curve is the standard normal distribution
Cumulative distribution function
Notation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{N}(\mu,\sigma^2)}
Parameters = mean (location)
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma^2>0} = variance (squared scale)
Support Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\in\R}
PDF
CDF
Quantile Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu+\sigma\sqrt{2} \operatorname{erf}^{-1}(2p-1)}
Mean Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu}
Median Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu}
Mode Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu}
Variance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma^2}
MAD Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma\sqrt{2/\pi}}
Skewness
Excess kurtosis Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0}
Entropy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \log(2\pi e\sigma^2)}
MGF Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp(\mu t + \sigma^2t^2/2)}
CF Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp(i\mu t - \sigma^2 t^2/2)}
Fisher information

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{I}(\mu,\sigma) =\begin {pmatrix} 1/\sigma^2 & 0 \\ 0 & 2/\sigma^2\end{pmatrix}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{I}(\mu,\sigma^2) =\begin {pmatrix} 1/\sigma^2 & 0 \\ 0 & 1/(2\sigma^4)\end{pmatrix}}
Kullback–Leibler divergence Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle { 1 \over 2 } \left\{ \left( \frac{\sigma_0}{\sigma_1} \right)^2 + \frac{(\mu_1 - \mu_0)^2}{\sigma_1^2} - 1 + 2 \ln {\sigma_1 \over \sigma_0} \right\}}

Usage

The Template:Infobox probability distribution generates a right-hand side infobox, based on the specified parameters. To use this template, copy the following code in your article and fill in as appropriate: <syntaxhighlight lang="wikitext">

</syntaxhighlight>

Parameters

  • |name= — Name at the top of the infobox; should be the name of the distribution without the word "distribution" in it, e.g. "Normal", "Exponential" (optional)
  • |type= — possible values are "discrete" (or "mass"), "continuous" (or "density"), and "multivariate"
  • |pdf_image= — probability density image-spec, such as: xxx.svg.
  • |pdf_caption= — probability density image caption
  • |pdf_image_alt=alternative text for the image in |pdf_image=
  • |cdf_image= — cumulative distribution image-spec, such as: yyy.svg.
  • |cdf_caption= — cumulative distribution image caption
  • |cdf_image_alt=alternative text for the image in |cdf_image=
  • |notation= — typical designation for this distribution, for example Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{N}(\mu,\sigma^2)} . The notation should include all the distribution parameters explained in the next cell.
  • |parameters= — parameters of the distribution family (such as μ and σ2 for the normal distribution).
  • |support= — the support of the distribution, which may depend on the parameters. Specify this as <syntaxhighlight lang="tex" inline></syntaxhighlight> for continuous distributions, and as <syntaxhighlight lang="tex" inline>Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k \in some set} </syntaxhighlight> for discrete distributions.
  • |pdf= — probability density function (or probability mass function), such as: <syntaxhighlight lang="tex" inline>Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\Gamma(r+k)}{k!\Gamma(r)}p^r(1-p)^k} </syntaxhighlight>. Please exclude the function label, such as "ƒ(x; μ,σ2)".
  • |cdf= — cumulative distribution function, e.g.: <math>I_p(r,k+1)\text{ where }I_p(x,y)</math> is the [[regularized incomplete beta function]].
  • |quantile=quantile function (or inverse cumulative distribution function). If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F()} is the CDF and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q()} is the quantile function, then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q(F(x))=x}
  • |mean= — the mean, or expected value.
  • |median= — the median, only for univariate distributions.
  • |mode= — the mode.
  • |variance=variance of the distribution, or covariance matrix in multivariate case.
  • |mad= — the mean absolute deviation around the mean.
  • |skewness= — the skewness.
  • |kurtosis= — the kurtosis excess.
  • |entropy= — the differential information entropy, preferably expressed in unspecified units using base-unspecific log(.) rather than base-specific ln(.) which yields entropy in units of nats only.
  • |cross_entropy= — the cross-entropy of the model
  • |mgf= — the moment-generating function, for example: <syntaxhighlight lang="tex" inline>Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{p}{1-(1-p) e^t}\right)^r} </syntaxhighlight>.
  • |char=/|cf= — the characteristic function, such as: <syntaxhighlight lang="tex" inline>Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{p}{1-(1-p) e^{it}}\right)^r} </syntaxhighlight>.
  • |pgf= - the Probability-generating function.
  • |fisher= — the Fisher information matrix for the model.
  • |KLDiv= — the Kullback-Leibler divergence of the model
  • |JSDiv= — the Jensen-Shannon divergence of the model
  • |moments= — formulas to use in Method of moments for the model.
  • |ES= — the Expected shortfall or CVaR for the model.
  • |bPOE= — the Buffered Probability of Exceedance for the model.
  • |intro= — optional message which will be displayed before all other content in the infobox.
  • |marginleft= — margin space left of infobox (default: 1em).
  • |box_width= — width of the infobox (default: 325px).

|parameters2=, |support2=, |pdf2=, |cdf2=, |mean2=, |median2=, |mode2=, |variance2=, |mad=, |skewness2=, |kurtosis2=, |entropy2=, |mgf2=, |char2=/|cf2=, |moments2=, |fisher2= are the same as their counterparts above. They should be used when the distribution needs two sets to describe it, e.g. Gamma distribution.

Tracking category