Conjugate homogeneous additive map
In mathematics , a function
f
:
V
→
W
{\displaystyle f:V\to W}
between two complex vector spaces is said to be antilinear or conjugate-linear if
f
(
x
+
y
)
=
f
(
x
)
+
f
(
y
)
(additivity)
f
(
s
x
)
=
s
¯
f
(
x
)
(conjugate homogeneity)
{\displaystyle {\begin{alignedat}{9}f(x+y)&=f(x)+f(y)&&\qquad {\text{ (additivity) }}\\f(sx)&={\overline {s}}f(x)&&\qquad {\text{ (conjugate homogeneity) }}\\\end{alignedat}}}
hold for all vectors
x
,
y
∈
V
{\displaystyle x,y\in V}
and every
complex number
s
,
{\displaystyle s,}
where
s
¯
{\displaystyle {\overline {s}}}
denotes the
complex conjugate of
s
.
{\displaystyle s.}
Antilinear maps stand in contrast to linear maps , which are additive maps that are homogeneous rather than conjugate homogeneous . If the vector spaces are real then antilinearity is the same as linearity.
Antilinear maps occur in quantum mechanics in the study of time reversal and in spinor calculus , where it is customary to replace the bars over the basis vectors and the components of geometric objects by dots put above the indices. Scalar-valued antilinear maps often arise when dealing with complex inner products and Hilbert spaces .
Definitions and characterizations
A function is called antilinear or conjugate linear if it is additive and conjugate homogeneous . An antilinear functional on a vector space
V
{\displaystyle V}
is a scalar-valued antilinear map.
A function
f
{\displaystyle f}
is called additive if
f
(
x
+
y
)
=
f
(
x
)
+
f
(
y
)
for all vectors
x
,
y
{\displaystyle f(x+y)=f(x)+f(y)\quad {\text{ for all vectors }}x,y}
while it is called
conjugate homogeneous if
f
(
a
x
)
=
a
¯
f
(
x
)
for all vectors
x
and all scalars
a
.
{\displaystyle f(ax)={\overline {a}}f(x)\quad {\text{ for all vectors }}x{\text{ and all scalars }}a.}
In contrast, a linear map is a function that is additive and
homogeneous , where
f
{\displaystyle f}
is called
homogeneous if
f
(
a
x
)
=
a
f
(
x
)
for all vectors
x
and all scalars
a
.
{\displaystyle f(ax)=af(x)\quad {\text{ for all vectors }}x{\text{ and all scalars }}a.}
An antilinear map
f
:
V
→
W
{\displaystyle f:V\to W}
may be equivalently described in terms of the linear map
f
¯
:
V
→
W
¯
{\displaystyle {\overline {f}}:V\to {\overline {W}}}
from
V
{\displaystyle V}
to the complex conjugate vector space
W
¯
.
{\displaystyle {\overline {W}}.}
Examples
Anti-linear dual map
Given a complex vector space
V
{\displaystyle V}
of rank 1, we can construct an anti-linear dual map which is an anti-linear map
l
:
V
→
C
{\displaystyle l:V\to \mathbb {C} }
sending an element
x
1
+
i
y
1
{\displaystyle x_{1}+iy_{1}}
for
x
1
,
y
1
∈
R
{\displaystyle x_{1},y_{1}\in \mathbb {R} }
to
x
1
+
i
y
1
↦
a
1
x
1
−
i
b
1
y
1
{\displaystyle x_{1}+iy_{1}\mapsto a_{1}x_{1}-ib_{1}y_{1}}
for some fixed real numbers
a
1
,
b
1
.
{\displaystyle a_{1},b_{1}.}
We can extend this to any finite dimensional complex vector space, where if we write out the standard basis
e
1
,
…
,
e
n
{\displaystyle e_{1},\ldots ,e_{n}}
and each standard basis element as
e
k
=
x
k
+
i
y
k
{\displaystyle e_{k}=x_{k}+iy_{k}}
then an anti-linear complex map to
C
{\displaystyle \mathbb {C} }
will be of the form
∑
k
x
k
+
i
y
k
↦
∑
k
a
k
x
k
−
i
b
k
y
k
{\displaystyle \sum _{k}x_{k}+iy_{k}\mapsto \sum _{k}a_{k}x_{k}-ib_{k}y_{k}}
for
a
k
,
b
k
∈
R
.
{\displaystyle a_{k},b_{k}\in \mathbb {R} .}
Isomorphism of anti-linear dual with real dual
The anti-linear dual[1] pg 36 of a complex vector space
V
{\displaystyle V}
Hom
C
¯
(
V
,
C
)
{\displaystyle \operatorname {Hom} _{\overline {\mathbb {C} }}(V,\mathbb {C} )}
is a special example because it is isomorphic to the real dual of the underlying real vector space of
V
,
{\displaystyle V,}
Hom
R
(
V
,
R
)
.
{\displaystyle {\text{Hom}}_{\mathbb {R} }(V,\mathbb {R} ).}
This is given by the map sending an anti-linear map
ℓ
:
V
→
C
{\displaystyle \ell :V\to \mathbb {C} }
to
Im
(
ℓ
)
:
V
→
R
{\displaystyle \operatorname {Im} (\ell ):V\to \mathbb {R} }
In the other direction, there is the inverse map sending a real dual vector
λ
:
V
→
R
{\displaystyle \lambda :V\to \mathbb {R} }
to
ℓ
(
v
)
=
−
λ
(
i
v
)
+
i
λ
(
v
)
{\displaystyle \ell (v)=-\lambda (iv)+i\lambda (v)}
giving the desired map.
Properties
The composite of two antilinear maps is a linear map . The class of semilinear maps generalizes the class of antilinear maps.
Anti-dual space
The vector space of all antilinear forms on a vector space
X
{\displaystyle X}
is called the algebraic anti-dual space of
X
.
{\displaystyle X.}
If
X
{\displaystyle X}
is a topological vector space , then the vector space of all continuous antilinear functionals on
X
,
{\displaystyle X,}
denoted by
X
¯
′
,
{\textstyle {\overline {X}}^{\prime },}
is called the continuous anti-dual space or simply the anti-dual space of
X
{\displaystyle X}
if no confusion can arise.
When
H
{\displaystyle H}
is a normed space then the canonical norm on the (continuous) anti-dual space
X
¯
′
,
{\textstyle {\overline {X}}^{\prime },}
denoted by
‖
f
‖
X
¯
′
,
{\textstyle \|f\|_{{\overline {X}}^{\prime }},}
is defined by using this same equation:
‖
f
‖
X
¯
′
:=
sup
‖
x
‖
≤
1
,
x
∈
X
|
f
(
x
)
|
for every
f
∈
X
¯
′
.
{\displaystyle \|f\|_{{\overline {X}}^{\prime }}~:=~\sup _{\|x\|\leq 1,x\in X}|f(x)|\quad {\text{ for every }}f\in {\overline {X}}^{\prime }.}
This formula is identical to the formula for the dual norm on the continuous dual space
X
′
{\displaystyle X^{\prime }}
of
X
,
{\displaystyle X,}
which is defined by
‖
f
‖
X
′
:=
sup
‖
x
‖
≤
1
,
x
∈
X
|
f
(
x
)
|
for every
f
∈
X
′
.
{\displaystyle \|f\|_{X^{\prime }}~:=~\sup _{\|x\|\leq 1,x\in X}|f(x)|\quad {\text{ for every }}f\in X^{\prime }.}
Canonical isometry between the dual and anti-dual
The complex conjugate
f
¯
{\displaystyle {\overline {f}}}
of a functional
f
{\displaystyle f}
is defined by sending
x
∈
domain
f
{\displaystyle x\in \operatorname {domain} f}
to
f
(
x
)
¯
.
{\textstyle {\overline {f(x)}}.}
It satisfies
‖
f
‖
X
′
=
‖
f
¯
‖
X
¯
′
and
‖
g
¯
‖
X
′
=
‖
g
‖
X
¯
′
{\displaystyle \|f\|_{X^{\prime }}~=~\left\|{\overline {f}}\right\|_{{\overline {X}}^{\prime }}\quad {\text{ and }}\quad \left\|{\overline {g}}\right\|_{X^{\prime }}~=~\|g\|_{{\overline {X}}^{\prime }}}
for every
f
∈
X
′
{\displaystyle f\in X^{\prime }}
and every
g
∈
X
¯
′
.
{\textstyle g\in {\overline {X}}^{\prime }.}
This says exactly that the canonical antilinear
bijection defined by
Cong
:
X
′
→
X
¯
′
where
Cong
(
f
)
:=
f
¯
{\displaystyle \operatorname {Cong} ~:~X^{\prime }\to {\overline {X}}^{\prime }\quad {\text{ where }}\quad \operatorname {Cong} (f):={\overline {f}}}
as well as its inverse
Cong
−
1
:
X
¯
′
→
X
′
{\displaystyle \operatorname {Cong} ^{-1}~:~{\overline {X}}^{\prime }\to X^{\prime }}
are antilinear
isometries and consequently also
homeomorphisms .
If
F
=
R
{\displaystyle \mathbb {F} =\mathbb {R} }
then
X
′
=
X
¯
′
{\displaystyle X^{\prime }={\overline {X}}^{\prime }}
and this canonical map
Cong
:
X
′
→
X
¯
′
{\displaystyle \operatorname {Cong} :X^{\prime }\to {\overline {X}}^{\prime }}
reduces down to the identity map.
Inner product spaces
If
X
{\displaystyle X}
is an inner product space then both the canonical norm on
X
′
{\displaystyle X^{\prime }}
and on
X
¯
′
{\displaystyle {\overline {X}}^{\prime }}
satisfies the parallelogram law , which means that the polarization identity can be used to define a canonical inner product on
X
′
{\displaystyle X^{\prime }}
and also on
X
¯
′
,
{\displaystyle {\overline {X}}^{\prime },}
which this article will denote by the notations
⟨
f
,
g
⟩
X
′
:=
⟨
g
∣
f
⟩
X
′
and
⟨
f
,
g
⟩
X
¯
′
:=
⟨
g
∣
f
⟩
X
¯
′
{\displaystyle \langle f,g\rangle _{X^{\prime }}:=\langle g\mid f\rangle _{X^{\prime }}\quad {\text{ and }}\quad \langle f,g\rangle _{{\overline {X}}^{\prime }}:=\langle g\mid f\rangle _{{\overline {X}}^{\prime }}}
where this inner product makes
X
′
{\displaystyle X^{\prime }}
and
X
¯
′
{\displaystyle {\overline {X}}^{\prime }}
into Hilbert spaces.
The inner products
⟨
f
,
g
⟩
X
′
{\textstyle \langle f,g\rangle _{X^{\prime }}}
and
⟨
f
,
g
⟩
X
¯
′
{\textstyle \langle f,g\rangle _{{\overline {X}}^{\prime }}}
are antilinear in their second arguments. Moreover, the canonical norm induced by this inner product (that is, the norm defined by
f
↦
⟨
f
,
f
⟩
X
′
{\textstyle f\mapsto {\sqrt {\left\langle f,f\right\rangle _{X^{\prime }}}}}
) is consistent with the dual norm (that is, as defined above by the supremum over the unit ball); explicitly, this means that the following holds for every
f
∈
X
′
:
{\displaystyle f\in X^{\prime }:}
sup
‖
x
‖
≤
1
,
x
∈
X
|
f
(
x
)
|
=
‖
f
‖
X
′
=
⟨
f
,
f
⟩
X
′
=
⟨
f
∣
f
⟩
X
′
.
{\displaystyle \sup _{\|x\|\leq 1,x\in X}|f(x)|=\|f\|_{X^{\prime }}~=~{\sqrt {\langle f,f\rangle _{X^{\prime }}}}~=~{\sqrt {\langle f\mid f\rangle _{X^{\prime }}}}.}
If
X
{\displaystyle X}
is an inner product space then the inner products on the dual space
X
′
{\displaystyle X^{\prime }}
and the anti-dual space
X
¯
′
,
{\textstyle {\overline {X}}^{\prime },}
denoted respectively by
⟨
⋅
,
⋅
⟩
X
′
{\textstyle \langle \,\cdot \,,\,\cdot \,\rangle _{X^{\prime }}}
and
⟨
⋅
,
⋅
⟩
X
¯
′
,
{\textstyle \langle \,\cdot \,,\,\cdot \,\rangle _{{\overline {X}}^{\prime }},}
are related by
⟨
f
¯
|
g
¯
⟩
X
¯
′
=
⟨
f
|
g
⟩
X
′
¯
=
⟨
g
|
f
⟩
X
′
for all
f
,
g
∈
X
′
{\displaystyle \langle \,{\overline {f}}\,|\,{\overline {g}}\,\rangle _{{\overline {X}}^{\prime }}={\overline {\langle \,f\,|\,g\,\rangle _{X^{\prime }}}}=\langle \,g\,|\,f\,\rangle _{X^{\prime }}\qquad {\text{ for all }}f,g\in X^{\prime }}
and
⟨
f
¯
|
g
¯
⟩
X
′
=
⟨
f
|
g
⟩
X
¯
′
¯
=
⟨
g
|
f
⟩
X
¯
′
for all
f
,
g
∈
X
¯
′
.
{\displaystyle \langle \,{\overline {f}}\,|\,{\overline {g}}\,\rangle _{X^{\prime }}={\overline {\langle \,f\,|\,g\,\rangle _{{\overline {X}}^{\prime }}}}=\langle \,g\,|\,f\,\rangle _{{\overline {X}}^{\prime }}\qquad {\text{ for all }}f,g\in {\overline {X}}^{\prime }.}
See also
Citations
References
Budinich, P. and Trautman, A. The Spinorial Chessboard . Springer-Verlag, 1988. ISBN 0-387-19078-3 . (antilinear maps are discussed in section 3.3).
Horn and Johnson, Matrix Analysis, Cambridge University Press, 1985. ISBN 0-521-38632-2 . (antilinear maps are discussed in section 4.6).
Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels . Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1 . OCLC 853623322 .