Fourier algebra

From English Wikipedia @ Freddythechick

Fourier and related algebras occur naturally in the harmonic analysis of locally compact groups. They play an important role in the duality theories of these groups. The Fourier–Stieltjes algebra and the Fourier–Stieltjes transform on the Fourier algebra of a locally compact group were introduced by Pierre Eymard in 1964.

Definition

Informal

Let G be a locally compact abelian group, and Ĝ the dual group of G. Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_1(\hat{\mathit{G}}) } is the space of all functions on Ĝ which are integrable with respect to the Haar measure on Ĝ, and it has a Banach algebra structure where the product of two functions is convolution. We define Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(G) } to be the set of Fourier transforms of functions in , and it is a closed sub-algebra of , the space of bounded continuous complex-valued functions on G with pointwise multiplication. We call the Fourier algebra of G.

Similarly, we write for the measure algebra on Ĝ, meaning the space of all finite regular Borel measures on Ĝ. We define to be the set of Fourier-Stieltjes transforms of measures in . It is a closed sub-algebra of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle CB(G) } , the space of bounded continuous complex-valued functions on G with pointwise multiplication. We call the Fourier-Stieltjes algebra of G. Equivalently, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(G) } can be defined as the linear span of the set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(G) } of continuous positive-definite functions on G.[1]

Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_1(\hat{\mathit{G}}) } is naturally included in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M(\hat{\mathit{G}}) } , and since the Fourier-Stieltjes transform of an Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_1(\hat{\mathit{G}}) } function is just the Fourier transform of that function, we have that . In fact, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(G) } is a closed ideal in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(G) } .

Formal

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(\mathit{G}) } be a Fourier–Stieltjes algebra and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(\mathit{G}) } be a Fourier algebra such that the locally compact group Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{G} } is abelian. Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M(\widehat{\mathit{G}}) } be the measure algebra of finite measures on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{G} } and let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_1(\widehat{\mathit{G}}) } be the convolution algebra of integrable functions on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{G} } , where is the character group of the Abelian group Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{G} } .

The Fourier–Stieltjes transform of a finite measure Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu } on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{\mathit{G}} } is the function on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{G} } defined by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{\mu}(x) = \int_{\widehat{G}} \overline{X(x)} \, d \mu(X), \quad x \in G }

The space Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(\mathit{G}) } of these functions is an algebra under pointwise multiplication is isomorphic to the measure algebra Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M(\widehat{\mathit{G}}) } . Restricted to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_1(\widehat{\mathit{G}}) } , viewed as a subspace of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M(\widehat{\mathit{G}}) } , the Fourier–Stieltjes transform is the Fourier transform on and its image is, by definition, the Fourier algebra Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(\mathit{G}) } . The generalized Bochner theorem states that a measurable function on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{G} } is equal, almost everywhere, to the Fourier–Stieltjes transform of a non-negative finite measure on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{G} } if and only if it is positive definite. Thus, can be defined as the linear span of the set of continuous positive-definite functions on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{G} } . This definition is still valid when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{G} } is not Abelian.

Helson–Kahane–Katznelson–Rudin theorem

Let A(G) be the Fourier algebra of a compact group G. Building upon the work of Wiener, Lévy, Gelfand, and Beurling, in 1959 Helson, Kahane, Katznelson, and Rudin proved that, when G is compact and abelian, a function f defined on a closed convex subset of the plane operates in A(G) if and only if f is real analytic.[2] In 1969 Dunkl proved the result holds when G is compact and contains an infinite abelian subgroup.

References

  1. ^ Renault, Jean (2001) [1994], "Fourier-algebra(2)", Encyclopedia of Mathematics, EMS Press
  2. ^ H. Helson; J.-P. Kahane; Y. Katznelson; W. Rudin (1959). "The functions which operate on Fourier transforms" (PDF). Acta Mathematica. 102 (1–2): 135–157. doi:10.1007/bf02559571. S2CID 121739671.
  • "Functions that Operate in the Fourier Algebra of a Compact Group" Charles F. Dunkl Proceedings of the American Mathematical Society, Vol. 21, No. 3. (Jun., 1969), pp. 540–544. Stable URL:[1]
  • "Functions which Operate in the Fourier Algebra of a Discrete Group" Leonede de Michele; Paolo M. Soardi, Proceedings of the American Mathematical Society, Vol. 45, No. 3. (Sep., 1974), pp. 389–392. Stable URL:[2]
  • "Uniform Closures of Fourier-Stieltjes Algebras", Ching Chou, Proceedings of the American Mathematical Society, Vol. 77, No. 1. (Oct., 1979), pp. 99–102. Stable URL: [3]
  • "Centralizers of the Fourier Algebra of an Amenable Group", P. F. Renaud, Proceedings of the American Mathematical Society, Vol. 32, No. 2. (Apr., 1972), pp. 539–542. Stable URL: [4]