Gram–Schmidt process

From English Wikipedia @ Freddythechick
The first two steps of the Gram–Schmidt process

In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other.

By technical definition, it is a method of constructing an orthonormal basis from a set of vectors in an inner product space, most commonly the Euclidean space equipped with the standard inner product. The Gram–Schmidt process takes a finite, linearly independent set of vectors for kn and generates an orthogonal set that spans the same -dimensional subspace of as .

The method is named after Jørgen Pedersen Gram and Erhard Schmidt, but Pierre-Simon Laplace had been familiar with it before Gram and Schmidt.[1] In the theory of Lie group decompositions, it is generalized by the Iwasawa decomposition.

The application of the Gram–Schmidt process to the column vectors of a full column rank matrix yields the QR decomposition (it is decomposed into an orthogonal and a triangular matrix).

The Gram–Schmidt process

The modified Gram-Schmidt process being executed on three linearly independent, non-orthogonal vectors of a basis for . Click on image for details. Modification is explained in the Numerical Stability section of this article.

The vector projection of a vector on a nonzero vector is defined as[note 1]

where denotes the inner product of the vectors and . This means that is the orthogonal projection of onto the line spanned by . If is the zero vector, then is defined as the zero vector.

Given vectors the Gram–Schmidt process defines the vectors as follows:

The sequence is the required system of orthogonal vectors, and the normalized vectors form an orthonormal set. The calculation of the sequence is known as Gram–Schmidt orthogonalization, and the calculation of the sequence is known as Gram–Schmidt orthonormalization.

To check that these formulas yield an orthogonal sequence, first compute by substituting the above formula for : we get zero. Then use this to compute again by substituting the formula for : we get zero. For arbitrary the proof is accomplished by mathematical induction.

Geometrically, this method proceeds as follows: to compute , it projects orthogonally onto the subspace generated by , which is the same as the subspace generated by . The vector is then defined to be the difference between and this projection, guaranteed to be orthogonal to all of the vectors in the subspace .

The Gram–Schmidt process also applies to a linearly independent countably infinite sequence {vi}i. The result is an orthogonal (or orthonormal) sequence {ui}i such that for natural number n: the algebraic span of is the same as that of .

If the Gram–Schmidt process is applied to a linearly dependent sequence, it outputs the 0 vector on the th step, assuming that is a linear combination of . If an orthonormal basis is to be produced, then the algorithm should test for zero vectors in the output and discard them because no multiple of a zero vector can have a length of 1. The number of vectors output by the algorithm will then be the dimension of the space spanned by the original inputs.

A variant of the Gram–Schmidt process using transfinite recursion applied to a (possibly uncountably) infinite sequence of vectors yields a set of orthonormal vectors with such that for any , the completion of the span of is the same as that of . In particular, when applied to a (algebraic) basis of a Hilbert space (or, more generally, a basis of any dense subspace), it yields a (functional-analytic) orthonormal basis. Note that in the general case often the strict inequality holds, even if the starting set was linearly independent, and the span of need not be a subspace of the span of (rather, it's a subspace of its completion).

Example

Euclidean space

Consider the following set of vectors in (with the conventional inner product) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=\left\{\mathbf {v} _{1}={\begin{bmatrix}3\\1\end{bmatrix}},\mathbf {v} _{2}={\begin{bmatrix}2\\2\end{bmatrix}}\right\}.}

Now, perform Gram–Schmidt, to obtain an orthogonal set of vectors:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {u} _{2}=\mathbf {v} _{2}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{2})={\begin{bmatrix}2\\2\end{bmatrix}}-\operatorname {proj} _{\left[{\begin{smallmatrix}3\\1\end{smallmatrix}}\right]}{\begin{bmatrix}2\\2\end{bmatrix}}={\begin{bmatrix}2\\2\end{bmatrix}}-{\frac {8}{10}}{\begin{bmatrix}3\\1\end{bmatrix}}={\begin{bmatrix}-2/5\\6/5\end{bmatrix}}.}

We check that the vectors Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {u} _{1}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {u} _{2}} are indeed orthogonal: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \mathbf {u} _{1},\mathbf {u} _{2}\rangle =\left\langle {\begin{bmatrix}3\\1\end{bmatrix}},{\begin{bmatrix}-2/5\\6/5\end{bmatrix}}\right\rangle =-{\frac {6}{5}}+{\frac {6}{5}}=0,} noting that if the dot product of two vectors is 0 then they are orthogonal.

For non-zero vectors, we can then normalize the vectors by dividing out their sizes as shown above: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {e} _{1}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}3\\1\end{bmatrix}}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {e} _{2}={\frac {1}{\sqrt {40 \over 25}}}{\begin{bmatrix}-2/5\\6/5\end{bmatrix}}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}-1\\3\end{bmatrix}}.}

Properties

Denote by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})} the result of applying the Gram–Schmidt process to a collection of vectors Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {v} _{1},\dots ,\mathbf {v} _{k}} . This yields a map .

It has the following properties:

  • It is continuous
  • It is orientation preserving in the sense that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname {or} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})=\operatorname {or} (\operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k}))} .
  • It commutes with orthogonal maps:

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\colon \mathbb {R} ^{n}\to \mathbb {R} ^{n}} be orthogonal (with respect to the given inner product). Then we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname {GS} (g(\mathbf {v} _{1}),\dots ,g(\mathbf {v} _{k}))=\left(g(\operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})_{1}),\dots ,g(\operatorname {GS} (\mathbf {v} _{1},\dots ,\mathbf {v} _{k})_{k})\right)}

Further, a parametrized version of the Gram–Schmidt process yields a (strong) deformation retraction of the general linear group Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm {GL} (\mathbb {R} ^{n})} onto the orthogonal group Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O(\mathbb {R} ^{n})} .

Numerical stability

When this process is implemented on a computer, the vectors Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {u} _{k}} are often not quite orthogonal, due to rounding errors. For the Gram–Schmidt process as described above (sometimes referred to as "classical Gram–Schmidt") this loss of orthogonality is particularly bad; therefore, it is said that the (classical) Gram–Schmidt process is numerically unstable.

The Gram–Schmidt process can be stabilized by a small modification; this version is sometimes referred to as modified Gram-Schmidt or MGS. This approach gives the same result as the original formula in exact arithmetic and introduces smaller errors in finite-precision arithmetic.

Instead of computing the vector uk as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {u} _{k}=\mathbf {v} _{k}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{k})-\operatorname {proj} _{\mathbf {u} _{2}}(\mathbf {v} _{k})-\cdots -\operatorname {proj} _{\mathbf {u} _{k-1}}(\mathbf {v} _{k}),} it is computed as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\begin{aligned}\mathbf {u} _{k}^{(1)}&=\mathbf {v} _{k}-\operatorname {proj} _{\mathbf {u} _{1}}(\mathbf {v} _{k}),\\\mathbf {u} _{k}^{(2)}&=\mathbf {u} _{k}^{(1)}-\operatorname {proj} _{\mathbf {u} _{2}}\left(\mathbf {u} _{k}^{(1)}\right),\\&\;\;\vdots \\\mathbf {u} _{k}^{(k-2)}&=\mathbf {u} _{k}^{(k-3)}-\operatorname {proj} _{\mathbf {u} _{k-2}}\left(\mathbf {u} _{k}^{(k-3)}\right),\\\mathbf {u} _{k}^{(k-1)}&=\mathbf {u} _{k}^{(k-2)}-\operatorname {proj} _{\mathbf {u} _{k-1}}\left(\mathbf {u} _{k}^{(k-2)}\right),\\\mathbf {e} _{k}&={\frac {\mathbf {u} _{k}^{(k-1)}}{\left\|\mathbf {u} _{k}^{(k-1)}\right\|}}\end{aligned}}}

This method is used in the previous animation, when the intermediate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {v} '_{3}} vector is used when orthogonalizing the blue vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {v} _{3}} .

Here is another description of the modified algorithm. Given the vectors Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {v} _{1},\mathbf {v} _{2},\dots ,\mathbf {v} _{n}} , in our first step we produce vectors Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {v} _{1},\mathbf {v} _{2}^{(1)},\dots ,\mathbf {v} _{n}^{(1)}} by removing components along the direction of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {v} _{1}} . In formulas, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {v} _{k}^{(1)}:=\mathbf {v} _{k}-{\frac {\langle \mathbf {v} _{k},\mathbf {v} _{1}\rangle }{\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle }}\mathbf {v} _{1}} . After this step we already have two of our desired orthogonal vectors Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {u} _{1},\dots ,\mathbf {u} _{n}} , namely Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {u} _{1}=\mathbf {v} _{1},\mathbf {u} _{2}=\mathbf {v} _{2}^{(1)}} , but we also made Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {v} _{3}^{(1)},\dots ,\mathbf {v} _{n}^{(1)}} already orthogonal to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {u} _{1}} . Next, we orthogonalize those remaining vectors against Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {u} _{2}=\mathbf {v} _{2}^{(1)}} . This means we compute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {v} _{3}^{(2)},\mathbf {v} _{4}^{(2)},\dots ,\mathbf {v} _{n}^{(2)}} by subtraction Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {v} _{k}^{(2)}:=\mathbf {v} _{k}^{(1)}-{\frac {\langle \mathbf {v} _{k}^{(1)},\mathbf {u} _{2}\rangle }{\langle \mathbf {u} _{2},\mathbf {u} _{2}\rangle }}\mathbf {u} _{2}} . Now we have stored the vectors Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {v} _{1},\mathbf {v} _{2}^{(1)},\mathbf {v} _{3}^{(2)},\mathbf {v} _{4}^{(2)},\dots ,\mathbf {v} _{n}^{(2)}} where the first three vectors are already Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {u} _{1},\mathbf {u} _{2},\mathbf {u} _{3}} and the remaining vectors are already orthogonal to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {u} _{1},\mathbf {u} _{2}} . As should be clear now, the next step orthogonalizes Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {v} _{4}^{(2)},\dots ,\mathbf {v} _{n}^{(2)}} against Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {u} _{3}=\mathbf {v} _{3}^{(2)}} . Proceeding in this manner we find the full set of orthogonal vectors Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {u} _{1},\dots ,\mathbf {u} _{n}} . If orthonormal vectors are desired, then we normalize as we go, so that the denominators in the subtraction formulas turn into ones.

Algorithm

The following MATLAB algorithm implements classical Gram–Schmidt orthonormalization. The vectors v1, ..., vk (columns of matrix V, so that V(:,j) is the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} th vector) are replaced by orthonormal vectors (columns of U) which span the same subspace.

<syntaxhighlight lang="matlab" line="1"> function U = gramschmidt(V)

   [n, k] = size(V);
   U = zeros(n,k);
   U(:,1) = V(:,1) / norm(V(:,1));
   for i = 2:k
       U(:,i) = V(:,i);
       for j = 1:i-1
           U(:,i) = U(:,i) - (U(:,j)'*U(:,i)) * U(:,j);
       end
       U(:,i) = U(:,i) / norm(U(:,i));
   end

end </syntaxhighlight>

The cost of this algorithm is asymptotically O(nk2) floating point operations, where n is the dimensionality of the vectors.[2]

Via Gaussian elimination

If the rows {v1, ..., vk} are written as a matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} , then applying Gaussian elimination to the augmented matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[AA^{\mathsf {T}}|A\right]} will produce the orthogonalized vectors in place of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} . However the matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AA^{\mathsf {T}}} must be brought to row echelon form, using only the row operation of adding a scalar multiple of one row to another.[3] For example, taking Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {v} _{1}={\begin{bmatrix}3&1\end{bmatrix}},\mathbf {v} _{2}={\begin{bmatrix}2&2\end{bmatrix}}} as above, we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[AA^{\mathsf {T}}|A\right]=\left[{\begin{array}{rr|rr}10&8&3&1\\8&8&2&2\end{array}}\right]}

And reducing this to row echelon form produces Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[{\begin{array}{rr|rr}1&.8&.3&.1\\0&1&-.25&.75\end{array}}\right]}

The normalized vectors are then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {e} _{1}={\frac {1}{\sqrt {.3^{2}+.1^{2}}}}{\begin{bmatrix}.3&.1\end{bmatrix}}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}3&1\end{bmatrix}}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {e} _{2}={\frac {1}{\sqrt {.25^{2}+.75^{2}}}}{\begin{bmatrix}-.25&.75\end{bmatrix}}={\frac {1}{\sqrt {10}}}{\begin{bmatrix}-1&3\end{bmatrix}},} as in the example above.

Determinant formula

The result of the Gram–Schmidt process may be expressed in a non-recursive formula using determinants.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {e} _{j}={\frac {1}{\sqrt {D_{j-1}D_{j}}}}{\begin{vmatrix}\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle &\langle \mathbf {v} _{2},\mathbf {v} _{1}\rangle &\cdots &\langle \mathbf {v} _{j},\mathbf {v} _{1}\rangle \\\langle \mathbf {v} _{1},\mathbf {v} _{2}\rangle &\langle \mathbf {v} _{2},\mathbf {v} _{2}\rangle &\cdots &\langle \mathbf {v} _{j},\mathbf {v} _{2}\rangle \\\vdots &\vdots &\ddots &\vdots \\\langle \mathbf {v} _{1},\mathbf {v} _{j-1}\rangle &\langle \mathbf {v} _{2},\mathbf {v} _{j-1}\rangle &\cdots &\langle \mathbf {v} _{j},\mathbf {v} _{j-1}\rangle \\\mathbf {v} _{1}&\mathbf {v} _{2}&\cdots &\mathbf {v} _{j}\end{vmatrix}}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {u} _{j}={\frac {1}{D_{j-1}}}{\begin{vmatrix}\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle &\langle \mathbf {v} _{2},\mathbf {v} _{1}\rangle &\cdots &\langle \mathbf {v} _{j},\mathbf {v} _{1}\rangle \\\langle \mathbf {v} _{1},\mathbf {v} _{2}\rangle &\langle \mathbf {v} _{2},\mathbf {v} _{2}\rangle &\cdots &\langle \mathbf {v} _{j},\mathbf {v} _{2}\rangle \\\vdots &\vdots &\ddots &\vdots \\\langle \mathbf {v} _{1},\mathbf {v} _{j-1}\rangle &\langle \mathbf {v} _{2},\mathbf {v} _{j-1}\rangle &\cdots &\langle \mathbf {v} _{j},\mathbf {v} _{j-1}\rangle \\\mathbf {v} _{1}&\mathbf {v} _{2}&\cdots &\mathbf {v} _{j}\end{vmatrix}}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{0}=1} and, for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j\geq 1} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{j}} is the Gram determinant

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{j}={\begin{vmatrix}\langle \mathbf {v} _{1},\mathbf {v} _{1}\rangle &\langle \mathbf {v} _{2},\mathbf {v} _{1}\rangle &\cdots &\langle \mathbf {v} _{j},\mathbf {v} _{1}\rangle \\\langle \mathbf {v} _{1},\mathbf {v} _{2}\rangle &\langle \mathbf {v} _{2},\mathbf {v} _{2}\rangle &\cdots &\langle \mathbf {v} _{j},\mathbf {v} _{2}\rangle \\\vdots &\vdots &\ddots &\vdots \\\langle \mathbf {v} _{1},\mathbf {v} _{j}\rangle &\langle \mathbf {v} _{2},\mathbf {v} _{j}\rangle &\cdots &\langle \mathbf {v} _{j},\mathbf {v} _{j}\rangle \end{vmatrix}}.}

Note that the expression for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {u} _{k}} is a "formal" determinant, i.e. the matrix contains both scalars and vectors; the meaning of this expression is defined to be the result of a cofactor expansion along the row of vectors.

The determinant formula for the Gram-Schmidt is computationally (exponentially) slower than the recursive algorithms described above; it is mainly of theoretical interest.

Expressed using geometric algebra

Expressed using notation used in geometric algebra, the unnormalized results of the Gram–Schmidt process can be expressed as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {u} _{k}=\mathbf {v} _{k}-\sum _{j=1}^{k-1}(\mathbf {v} _{k}\cdot \mathbf {u} _{j})\mathbf {u} _{j}^{-1}\ ,} which is equivalent to the expression using the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname {proj} } operator defined above. The results can equivalently be expressed as[4] Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf {u} _{k}=\mathbf {v} _{k}\wedge \mathbf {v} _{k-1}\wedge \cdot \cdot \cdot \wedge \mathbf {v} _{1}(\mathbf {v} _{k-1}\wedge \cdot \cdot \cdot \wedge \mathbf {v} _{1})^{-1},} which is closely related to the expression using determinants above.

Alternatives

Other orthogonalization algorithms use Householder transformations or Givens rotations. The algorithms using Householder transformations are more stable than the stabilized Gram–Schmidt process. On the other hand, the Gram–Schmidt process produces the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} th orthogonalized vector after the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} th iteration, while orthogonalization using Householder reflections produces all the vectors only at the end. This makes only the Gram–Schmidt process applicable for iterative methods like the Arnoldi iteration.

Yet another alternative is motivated by the use of Cholesky decomposition for inverting the matrix of the normal equations in linear least squares. Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} be a full column rank matrix, whose columns need to be orthogonalized. The matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V^{*}V} is Hermitian and positive definite, so it can be written as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V^{*}V=LL^{*},} using the Cholesky decomposition. The lower triangular matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} with strictly positive diagonal entries is invertible. Then columns of the matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U=V\left(L^{-1}\right)^{*}} are orthonormal and span the same subspace as the columns of the original matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} . The explicit use of the product Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V^{*}V} makes the algorithm unstable, especially if the product's condition number is large. Nevertheless, this algorithm is used in practice and implemented in some software packages because of its high efficiency and simplicity.

In quantum mechanics there are several orthogonalization schemes with characteristics better suited for certain applications than original Gram–Schmidt. Nevertheless, it remains a popular and effective algorithm for even the largest electronic structure calculations.[5]

Run-time complexity

Gram-Schmidt orthogonalization can be done in strongly-polynomial time. The run-time analysis is similar to that of Gaussian elimination.[6]: 40 

See also

References

  1. ^ Cheney, Ward; Kincaid, David (2009). Linear Algebra: Theory and Applications. Sudbury, Ma: Jones and Bartlett. pp. 544, 558. ISBN 978-0-7637-5020-6.
  2. ^ Golub & Van Loan 1996, §5.2.8.
  3. ^ Pursell, Lyle; Trimble, S. Y. (1 January 1991). "Gram-Schmidt Orthogonalization by Gauss Elimination". The American Mathematical Monthly. 98 (6): 544–549. doi:10.2307/2324877. JSTOR 2324877.
  4. ^ Doran, Chris; Lasenby, Anthony (2007). Geometric Algebra for Physicists. Cambridge University Press. p. 124. ISBN 978-0-521-71595-9.
  5. ^ Pursell, Yukihiro; et al. (2011). "First-principles calculations of electron states of a silicon nanowire with 100,000 atoms on the K computer". Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis. pp. 1:1–1:11. doi:10.1145/2063384.2063386. ISBN 9781450307710. S2CID 14316074.
  6. ^ Grötschel, Martin; Lovász, László; Schrijver, Alexander (1993), Geometric algorithms and combinatorial optimization, Algorithms and Combinatorics, vol. 2 (2nd ed.), Springer-Verlag, Berlin, doi:10.1007/978-3-642-78240-4, ISBN 978-3-642-78242-8, MR 1261419

Notes

  1. ^ In the complex case, this assumes that the inner product is linear in the first argument and conjugate-linear in the second. In physics a more common convention is linearity in the second argument, in which case we define Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )={\frac {\langle \mathbf {u} ,\mathbf {v} \rangle }{\langle \mathbf {u} ,\mathbf {u} \rangle }}\,\mathbf {u} .}

Sources

External links

Lua error in mw.title.lua at line 346: bad argument #2 to 'title.new' (unrecognized namespace name 'Portal').