Igusa zeta function
In mathematics, an Igusa zeta function is a type of generating function, counting the number of solutions of an equation, modulo p, p2, p3, and so on.
Definition
For a prime number p let K be a p-adic field, i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [K: \mathbb{Q}_p]<\infty } , R the valuation ring and P the maximal ideal. For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z \in K} we denote by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{ord}(z)} the valuation of z, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mid z \mid = q^{-\operatorname{ord}(z)}} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ac(z)=z \pi^{-\operatorname{ord}(z)}} for a uniformizing parameter π of R.
Furthermore let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi : K^n \to \mathbb{C}} be a Schwartz–Bruhat function, i.e. a locally constant function with compact support and let be a character of .
In this situation one associates to a non-constant polynomial the Igusa zeta function
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_\phi(s,\chi) = \int_{K^n} \phi(x_1,\ldots,x_n) \chi(ac(f(x_1,\ldots,x_n))) |f(x_1,\ldots,x_n)|^s \, dx }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s \in \mathbb{C}, \operatorname{Re}(s)>0,} and dx is Haar measure so normalized that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^n} has measure 1.
Igusa's theorem
Jun-Ichi Igusa (1974) showed that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_\phi (s,\chi)} is a rational function in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=q^{-s}} . The proof uses Heisuke Hironaka's theorem about the resolution of singularities. Later, an entirely different proof was given by Jan Denef using p-adic cell decomposition. Little is known, however, about explicit formulas. (There are some results about Igusa zeta functions of Fermat varieties.)
Congruences modulo powers of P
Henceforth we take Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi} to be the characteristic function of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^n} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} to be the trivial character. Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_i} denote the number of solutions of the congruence
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x_1,\ldots,x_n) \equiv 0 \mod P^i} .
Then the Igusa zeta function
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z(t)= \int_{R^n} |f(x_1,\ldots,x_n)|^s \, dx }
is closely related to the Poincaré series
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(t)= \sum_{i=0}^{\infty} q^{-in}N_i t^i}
by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(t)= \frac{1-t Z(t)}{1-t}.}
References
- Igusa, Jun-Ichi (1974), "Complex powers and asymptotic expansions. I. Functions of certain types", Journal für die reine und angewandte Mathematik, 1974 (268–269): 110–130, doi:10.1515/crll.1974.268-269.110, Zbl 0287.43007
- Information for this article was taken from J. Denef, Report on Igusa's Local Zeta Function, Séminaire Bourbaki 43 (1990-1991), exp. 741; Astérisque 201-202-203 (1991), 359-386