List of common coordinate transformations

From English Wikipedia @ Freddythechick

This is a list of some of the most commonly used coordinate transformations.

2-dimensional

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x, y)} be the standard Cartesian coordinates, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (r, \theta)} the standard polar coordinates.

To Cartesian coordinates

From polar coordinates

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} x &= r\cos\theta \\ y &= r\sin\theta \\[5pt] \frac{\partial(x, y)}{\partial(r, \theta)} &= \begin{bmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & \phantom{-}r\cos\theta \end{bmatrix} \\[5pt] \text{Jacobian} = \det{\frac{\partial(x, y)}{\partial(r, \theta)}} &= r \end{align}}

From log-polar coordinates

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} x &= e^\rho\cos\theta, \\ y &= e^\rho\sin\theta. \end{align}}

By using complex numbers Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x, y) = x + iy'} , the transformation can be written as

That is, it is given by the complex exponential function.

From bipolar coordinates

From 2-center bipolar coordinates

From Cesàro equation

To polar coordinates

From Cartesian coordinates

Note: solving for returns the resultant angle in the first quadrant (). To find one must refer to the original Cartesian coordinate, determine the quadrant in which lies (for example, (3,−3) [Cartesian] lies in QIV), then use the following to solve for

The value for must be solved for in this manner because for all values of , is only defined for , and is periodic (with period ). This means that the inverse function will only give values in the domain of the function, but restricted to a single period. Hence, the range of the inverse function is only half a full circle.

Note that one can also use

From 2-center bipolar coordinates

Where 2c is the distance between the poles.

To log-polar coordinates from Cartesian coordinates

Arc-length and curvature

In Cartesian coordinates

In polar coordinates

3-dimensional

Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as [1], see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range of 180°, running from 0° to 180°, and does not pose any problem when calculated from an arccosine, but beware for an arctangent.

If, in the alternative definition, θ is chosen to run from −90° to +90°, in opposite direction of the earlier definition, it can be found uniquely from an arcsine, but beware of an arccotangent. In this case in all formulas below all arguments in θ should have sine and cosine exchanged, and as derivative also a plus and minus exchanged.

All divisions by zero result in special cases of being directions along one of the main axes and are in practice most easily solved by observation.

To Cartesian coordinates

From spherical coordinates

So for the volume element: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx\,dy\,dz = \det{\frac{\partial(x, y, z)}{\partial(\rho, \theta, \varphi)}}\,d\rho\,d\theta\,d\varphi = \rho^2 \sin\theta \,d\rho \,d\theta \,d\varphi }

From cylindrical coordinates

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} x &= r \, \cos\theta\\ y &= r \, \sin\theta \\ z &= z \, \\ \frac{\partial(x, y, z)}{\partial(r, \theta, z)} &= \begin{pmatrix} \cos\theta & -r\sin\theta & 0 \\ \sin\theta & r\cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{align}}

So for the volume element: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dV = dx\,dy\,dz = \det{\frac{\partial(x, y, z)}{\partial(r, \theta, z)}}\,dr\,d\theta\,dz = r \,dr \,d\theta \,dz }

To spherical coordinates

From Cartesian coordinates

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \rho &= \sqrt{x^2 + y^2 + z^2} \\ \theta &= \arctan \left( \frac{\sqrt{x^2 + y^2}}{z} \right)=\arccos \left( {\frac{z}{\sqrt{x^2 + y^2 + z^2}}} \right) \\ \varphi &= \arctan \left( {\frac{y}{x}} \right) = \arccos \left( \frac{x}{\sqrt{x^2 + y^2}}\right) = \arcsin \left( \frac{y}{\sqrt{x^2 + y^2}}\right) \\ \frac{\partial\left(\rho, \theta, \varphi\right)}{\partial\left(x, y, z\right)} &= \begin{pmatrix} \frac{x}{\rho} & \frac{y}{\rho} & \frac{z}{\rho} \\ \frac{xz}{\rho^2\sqrt{x^2 + y^2}} & \frac{yz}{\rho^2\sqrt{x^2 + y^2}} & -\frac{\sqrt{x^2 + y^2}}{\rho^2} \\ \frac{-y}{x^2 + y^2} & \frac{x}{x^2 + y^2} & 0 \\ \end{pmatrix} \end{align}}

See also the article on atan2 for how to elegantly handle some edge cases.

So for the element: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\rho\,d\theta\,d\varphi=\det\frac{\partial(\rho,\theta,\varphi)}{\partial(x,y,z)}\,dx\,dy\,dz=\frac{1}{\sqrt{x^2+y^2}\sqrt{x^2+y^2+z^2}}\,dx\,dy\,dz}

From cylindrical coordinates

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \rho &= \sqrt{r^2 + h^2} \\ \theta &= \arctan\frac{r}{h} \\ \varphi &= \varphi \\ \frac{\partial(\rho, \theta, \varphi)}{\partial(r, h, \varphi)} &= \begin{pmatrix} \frac{r}{\sqrt{r^2 + h^2}} & \frac{h}{\sqrt{r^2 + h^2}} & 0 \\ \frac{h}{r^2 + h^2} & \frac{-r}{r^2 + h^2} & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \\ \det \frac{\partial(\rho, \theta, \varphi)}{\partial(r, h, \varphi)} &= \frac{1}{\sqrt{r^2+h^2}} \end{align}}

To cylindrical coordinates

From Cartesian coordinates

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} r &= \sqrt{x^2 + y^2} \\ \theta &= \arctan{\left(\frac{y}{x}\right)} \\ z &= z \quad \end{align}}

From spherical coordinates

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} r &= \rho \sin \varphi \\ h &= \rho \cos \varphi \\ \theta &= \theta \\ \frac{\partial(r, h, \theta)}{\partial(\rho, \varphi, \theta)} &= \begin{pmatrix} \sin\varphi & \rho\cos\varphi & 0 \\ \cos\varphi & -\rho\sin\varphi & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \\ \det\frac{\partial(r, h, \theta)}{\partial(\rho, \varphi, \theta)} &= -\rho \end{align}}

Arc-length, curvature and torsion from Cartesian coordinates

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} s &= \int_0^t \sqrt{{x'}^2 + {y'}^2 + {z'}^2}\, dt \\[3pt] \kappa &= \frac{\sqrt{\left(z''y'-y''z'\right)^2 + \left(x''z' - z''x'\right)^2 + \left(y''x' - x''y'\right)^2}}{\left({x'}^2 + {y'}^2 + {z'}^2\right)^\frac{3}{2}} \\[3pt] \tau &= \frac{x'''\left(y'z'' - y''z'\right) + y'''\left(x''z' - x'z''\right) + z'''\left(x'y'' - x''y'\right)}{{\left(x'y'' - x''y'\right)}^2 + {\left(x''z'- x'z''\right)}^2 + {\left(y'z'' - y''z'\right)}^2} \end{align}}

See also

References

  • Arfken, George (2013). Mathematical Methods for Physicists. Academic Press. ISBN 978-0123846549.