Multiple gamma function

In mathematics, the multiple gamma function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_N} is a generalization of the Euler gamma function and the Barnes G-function. The double gamma function was studied by Barnes (1901). At the end of this paper he mentioned the existence of multiple gamma functions generalizing it, and studied these further in Barnes (1904).
Double gamma functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_2} are closely related to the q-gamma function, and triple gamma functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_3} are related to the elliptic gamma function.
Definition
For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Re a_i>0} , let
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \zeta_N} is the Barnes zeta function. (This differs by a constant from Barnes's original definition.)
Properties
Considered as a meromorphic function of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_N(w\mid a_1,\ldots,a_N)} has no zeros. It has poles at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w= -\sum_{i=1}^N n_ia_i } for non-negative integers Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_i} . These poles are simple unless some of them coincide. Up to multiplication by the exponential of a polynomial, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_N(w\mid a_1,\ldots,a_N)} is the unique meromorphic function of finite order with these zeros and poles.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_0(w\mid) = \frac{1}{w}\ ,}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_1(w\mid a) = \frac{a^{a^{-1}w-\frac12}}{\sqrt{2\pi}} \Gamma\left(a^{-1} w\right)\ , }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_N(w\mid a_1,\ldots,a_N)=\Gamma_{N-1}(w\mid a_1,\ldots,a_{N-1})\Gamma_N(w+a_N\mid a_1,\ldots,a_N)\ .}
In the case of the double Gamma function, the asymptotic behaviour for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w\to \infty} is known, and the leading factor is[1]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_2(w|a_1,a_2)\ \underset{w\to \infty}{\sim}\ w^{\frac{w^2}{2a_1a_2}} \quad \text{for}\quad \left\{\begin{array}{l} \frac{a_1}{a_2}\in\mathbb{C}\backslash(-\infty,0]\ , \\ w \in \mathbb{C}\backslash \left(\mathbb{R}_+a_1+\mathbb{R}_+a_2\right)\ . \end{array}\right. }
Infinite product representation
The multiple gamma function has an infinite product representation that makes it manifest that it is meromorphic, and that also makes the positions of its poles manifest. In the case of the double gamma function, this representation is [2]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_2(w\mid a_1,a_2) = \frac{e^{\lambda_1w +\lambda_2 w^2}}{w} \prod_{\begin{array}{c} (n_1,n_2)\in\mathbb{N}^2\\ (n_1,n_2)\neq (0,0)\end{array}} \frac{e^{\frac{w}{n_1a_1+n_2a_2}- \frac12 \frac{w^2}{(n_1a_1+n_2a_2)^2}}}{1+\frac{w}{n_1a_1+n_2a_2}}\ , }
where we define the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} -independent coefficients
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_2 = \frac12\underset{s=2}{\operatorname{Res}_0}\zeta_2(s,0\mid a_1,a_2) + \frac12 \underset{s=2}{\operatorname{Res}_1}\zeta_2(s,0\mid a_1,a_2)\ , }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \underset{s=s_0}{\operatorname{Res}_n} f(s) = \frac{1}{2\pi i}\oint_{s_0} (s-s_0)^{n-1} f(s) \, ds} is an Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} -th order residue at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_0} .
Another representation as a product over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{N}} leads to an algorithm for numerically computing the double Gamma function.[1]
Reduction to the Barnes G-function
The double gamma function with parameters Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1,1} obeys the relations [2]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_2(w+1|1,1) = \frac{\sqrt{2\pi}}{\Gamma(w)} \Gamma_2(w|1,1) \quad , \quad \Gamma_2(1|1,1) = \sqrt{2\pi} \ . }
It is related to the Barnes G-function by
The double gamma function and conformal field theory
For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Re b>0} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q=b+b^{-1}} , the function
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_b(w) = \frac{\Gamma_2(w\mid b,b^{-1})}{\Gamma_2\left(\frac{Q}{2}\mid b,b^{-1}\right)}\ , }
is invariant under Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b\to b^{-1} } , and obeys the relations
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_b(w+b) = \sqrt{2\pi}\frac{b^{bw-\frac12}}{\Gamma(bw)}\Gamma_b(w)\quad , \quad \Gamma_b(w+b^{-1}) = \sqrt{2\pi}\frac{b^{-b^{-1}w+\frac12}}{\Gamma(b^{-1}w)} \Gamma_b(w)\ . }
For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Re w>0} , it has the integral representation
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log\Gamma_b(w) = \int_0^\infty\frac{dt}{t}\left[\frac{e^{-wt}-e^{-\frac{Q}{2}t}}{(1-e^{-bt})(1-e^{-b^{-1}t})} -\frac{\left(\frac{Q}{2}-w\right)^2}{2}e^{-t} -\frac{\frac{Q}{2}-w}{t}\right]\ . }
From the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_b(w)} , we define the double Sine function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_b(w)} and the Upsilon function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Upsilon_b(w)} by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_b(w) =\frac{\Gamma_b(w)}{\Gamma_b(Q-w)} \quad , \quad \Upsilon_b(w)=\frac{1}{\Gamma_b(w)\Gamma_b(Q-w)}\ . }
These functions obey the relations
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_b(w+b) = 2\sin(\pi bw)S_b(w) \quad , \quad \Upsilon_b(w+b)=\frac{\Gamma(bw)}{\Gamma(1-bw)} b^{1-2bw}\Upsilon_b(w) \ , }
plus the relations that are obtained by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b\to b^{-1}} . For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0<\Re w<\Re Q} they have the integral representations
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log S_b(w) = \int_0^\infty\frac{dt}{t}\left[ \frac{ \sinh\left(\frac{Q}{2}-w\right)t}{2\sinh\left(\frac12 bt\right)\sinh\left(\frac12 b^{-1}t\right)}-\frac{Q-2w}{t}\right]\ ,}
The functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_b,S_b} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Upsilon_b} appear in correlation functions of two-dimensional conformal field theory, with the parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} being related to the central charge of the underlying Virasoro algebra.[3] In particular, the three-point function of Liouville theory is written in terms of the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Upsilon_b} .
References
- ^ 1.0 1.1 Alexanian, Shahen; Kuznetsov, Alexey (2022-08-29). "On the Barnes double gamma function". arXiv:2208.13876v1 [math.NT].
- ^ 2.0 2.1 Spreafico, Mauro (2009). "On the Barnes double zeta and gamma functions". Journal of Number Theory. 129 (9): 2035–2063. doi:10.1016/j.jnt.2009.03.005.
- ^ Ponsot, B. Recent progress on Liouville Field Theory (Thesis). arXiv:hep-th/0301193. Bibcode:2003PhDT.......180P.
Further reading
- Barnes, E. W. (1899), "The Genesis of the Double Gamma Functions", Proc. London Math. Soc., s1-31: 358–381, doi:10.1112/plms/s1-31.1.358
- Barnes, E. W. (1899), "The Theory of the Double Gamma Function", Proceedings of the Royal Society of London, 66 (424–433): 265–268, doi:10.1098/rspl.1899.0101, ISSN 0370-1662, JSTOR 116064, S2CID 186213903
- Barnes, E. W. (1901), "The Theory of the Double Gamma Function", Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 196 (274–286): 265–387, Bibcode:1901RSPTA.196..265B, doi:10.1098/rsta.1901.0006, ISSN 0264-3952, JSTOR 90809
- Barnes, E. W. (1904), "On the theory of the multiple gamma function", Trans. Camb. Philos. Soc., 19: 374–425
- Friedman, Eduardo; Ruijsenaars, Simon (2004), "Shintani–Barnes zeta and gamma functions", Advances in Mathematics, 187 (2): 362–395, doi:10.1016/j.aim.2003.07.020, ISSN 0001-8708, MR 2078341
- Ruijsenaars, S. N. M. (2000), "On Barnes' multiple zeta and gamma functions", Advances in Mathematics, 156 (1): 107–132, doi:10.1006/aima.2000.1946, ISSN 0001-8708, MR 1800255