Multiple gamma function

From English Wikipedia @ Freddythechick
Plot of the Barnes G aka double gamma function G(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Plot of the Barnes G aka double gamma function G(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

In mathematics, the multiple gamma function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_N} is a generalization of the Euler gamma function and the Barnes G-function. The double gamma function was studied by Barnes (1901). At the end of this paper he mentioned the existence of multiple gamma functions generalizing it, and studied these further in Barnes (1904).

Double gamma functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_2} are closely related to the q-gamma function, and triple gamma functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_3} are related to the elliptic gamma function.

Definition

For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Re a_i>0} , let

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \zeta_N} is the Barnes zeta function. (This differs by a constant from Barnes's original definition.)

Properties

Considered as a meromorphic function of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_N(w\mid a_1,\ldots,a_N)} has no zeros. It has poles at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w= -\sum_{i=1}^N n_ia_i } for non-negative integers Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_i} . These poles are simple unless some of them coincide. Up to multiplication by the exponential of a polynomial, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_N(w\mid a_1,\ldots,a_N)} is the unique meromorphic function of finite order with these zeros and poles.

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_0(w\mid) = \frac{1}{w}\ ,}
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_1(w\mid a) = \frac{a^{a^{-1}w-\frac12}}{\sqrt{2\pi}} \Gamma\left(a^{-1} w\right)\ , }
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_N(w\mid a_1,\ldots,a_N)=\Gamma_{N-1}(w\mid a_1,\ldots,a_{N-1})\Gamma_N(w+a_N\mid a_1,\ldots,a_N)\ .}

In the case of the double Gamma function, the asymptotic behaviour for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w\to \infty} is known, and the leading factor is[1]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_2(w|a_1,a_2)\ \underset{w\to \infty}{\sim}\ w^{\frac{w^2}{2a_1a_2}} \quad \text{for}\quad \left\{\begin{array}{l} \frac{a_1}{a_2}\in\mathbb{C}\backslash(-\infty,0]\ , \\ w \in \mathbb{C}\backslash \left(\mathbb{R}_+a_1+\mathbb{R}_+a_2\right)\ . \end{array}\right. }

Infinite product representation

The multiple gamma function has an infinite product representation that makes it manifest that it is meromorphic, and that also makes the positions of its poles manifest. In the case of the double gamma function, this representation is [2]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_2(w\mid a_1,a_2) = \frac{e^{\lambda_1w +\lambda_2 w^2}}{w} \prod_{\begin{array}{c} (n_1,n_2)\in\mathbb{N}^2\\ (n_1,n_2)\neq (0,0)\end{array}} \frac{e^{\frac{w}{n_1a_1+n_2a_2}- \frac12 \frac{w^2}{(n_1a_1+n_2a_2)^2}}}{1+\frac{w}{n_1a_1+n_2a_2}}\ , }

where we define the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} -independent coefficients

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_2 = \frac12\underset{s=2}{\operatorname{Res}_0}\zeta_2(s,0\mid a_1,a_2) + \frac12 \underset{s=2}{\operatorname{Res}_1}\zeta_2(s,0\mid a_1,a_2)\ , }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \underset{s=s_0}{\operatorname{Res}_n} f(s) = \frac{1}{2\pi i}\oint_{s_0} (s-s_0)^{n-1} f(s) \, ds} is an Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} -th order residue at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_0} .

Another representation as a product over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{N}} leads to an algorithm for numerically computing the double Gamma function.[1]

Reduction to the Barnes G-function

The double gamma function with parameters Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1,1} obeys the relations [2]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_2(w+1|1,1) = \frac{\sqrt{2\pi}}{\Gamma(w)} \Gamma_2(w|1,1) \quad , \quad \Gamma_2(1|1,1) = \sqrt{2\pi} \ . }

It is related to the Barnes G-function by

The double gamma function and conformal field theory

For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Re b>0} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q=b+b^{-1}} , the function

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_b(w) = \frac{\Gamma_2(w\mid b,b^{-1})}{\Gamma_2\left(\frac{Q}{2}\mid b,b^{-1}\right)}\ , }

is invariant under Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b\to b^{-1} } , and obeys the relations

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_b(w+b) = \sqrt{2\pi}\frac{b^{bw-\frac12}}{\Gamma(bw)}\Gamma_b(w)\quad , \quad \Gamma_b(w+b^{-1}) = \sqrt{2\pi}\frac{b^{-b^{-1}w+\frac12}}{\Gamma(b^{-1}w)} \Gamma_b(w)\ . }

For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Re w>0} , it has the integral representation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log\Gamma_b(w) = \int_0^\infty\frac{dt}{t}\left[\frac{e^{-wt}-e^{-\frac{Q}{2}t}}{(1-e^{-bt})(1-e^{-b^{-1}t})} -\frac{\left(\frac{Q}{2}-w\right)^2}{2}e^{-t} -\frac{\frac{Q}{2}-w}{t}\right]\ . }

From the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_b(w)} , we define the double Sine function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_b(w)} and the Upsilon function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Upsilon_b(w)} by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_b(w) =\frac{\Gamma_b(w)}{\Gamma_b(Q-w)} \quad , \quad \Upsilon_b(w)=\frac{1}{\Gamma_b(w)\Gamma_b(Q-w)}\ . }

These functions obey the relations

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_b(w+b) = 2\sin(\pi bw)S_b(w) \quad , \quad \Upsilon_b(w+b)=\frac{\Gamma(bw)}{\Gamma(1-bw)} b^{1-2bw}\Upsilon_b(w) \ , }

plus the relations that are obtained by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b\to b^{-1}} . For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0<\Re w<\Re Q} they have the integral representations

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log S_b(w) = \int_0^\infty\frac{dt}{t}\left[ \frac{ \sinh\left(\frac{Q}{2}-w\right)t}{2\sinh\left(\frac12 bt\right)\sinh\left(\frac12 b^{-1}t\right)}-\frac{Q-2w}{t}\right]\ ,}

The functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_b,S_b} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Upsilon_b} appear in correlation functions of two-dimensional conformal field theory, with the parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} being related to the central charge of the underlying Virasoro algebra.[3] In particular, the three-point function of Liouville theory is written in terms of the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Upsilon_b} .

References

  1. ^ 1.0 1.1 Alexanian, Shahen; Kuznetsov, Alexey (2022-08-29). "On the Barnes double gamma function". arXiv:2208.13876v1 [math.NT].
  2. ^ 2.0 2.1 Spreafico, Mauro (2009). "On the Barnes double zeta and gamma functions". Journal of Number Theory. 129 (9): 2035–2063. doi:10.1016/j.jnt.2009.03.005.
  3. ^ Ponsot, B. Recent progress on Liouville Field Theory (Thesis). arXiv:hep-th/0301193. Bibcode:2003PhDT.......180P.

Further reading