Hypergeometric distribution

From English Wikipedia @ Freddythechick
Hypergeometric
Probability mass function
Hypergeometric PDF plot
Cumulative distribution function
Hypergeometric CDF plot
Parameters
Support Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle{k\, \in\, \left\{\max{(0,\, n+K-N)},\, \dots,\, \min{(n,\, K )}\right\}}\,}
PMF
CDF Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-{{{n \choose {k+1}}{{N-n} \choose {K-k-1}}}\over {N \choose K}} \,_3F_2\!\!\left[\begin{array}{c}1,\ k+1-K,\ k+1-n \\ k+2,\ N+k+2-K-n\end{array};1\right],} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,_pF_q} is the generalized hypergeometric function
Mean Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n {K \over N}}
Mode Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left \lceil \frac{(n+1)(K+1)}{N+2} \right \rceil-1, \left \lfloor \frac{(n+1)(K+1)}{N+2} \right \rfloor}
Variance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n{K\over N}{N-K\over N}{N-n\over N-1}}
Skewness Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(N-2K)(N-1)^\frac{1}{2}(N-2n)}{[nK(N-K)(N-n)]^\frac{1}{2}(N-2)}}
Excess kurtosis

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.\frac{1}{n K(N-K)(N-n)(N-2)(N-3)}\cdot\right.} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Big[(N-1)N^{2}\Big(N(N+1)-6K(N-K)-6n(N-n)\Big)+{}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}+6 n K (N-K)(N-n)(5N-6)\Big]}
MGF Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{{N-K \choose n} \scriptstyle{\,_2F_1(-n, -K; N - K - n + 1; e^{t}) } } {{N \choose n}} \,\!}
CF Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{{N-K \choose n} \scriptstyle{\,_2F_1(-n, -K; N - K - n + 1; e^{it}) }} {{N \choose n}} }

In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} successes (random draws for which the object drawn has a specified feature) in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} draws, without replacement, from a finite population of size Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} that contains exactly objects with that feature, wherein each draw is either a success or a failure. In contrast, the binomial distribution describes the probability of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} successes in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} draws with replacement.

Definitions

Probability mass function

The following conditions characterize the hypergeometric distribution:

  • The result of each draw (the elements of the population being sampled) can be classified into one of two mutually exclusive categories (e.g. Pass/Fail or Employed/Unemployed).
  • The probability of a success changes on each draw, as each draw decreases the population (sampling without replacement from a finite population).

A random variable Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} follows the hypergeometric distribution if its probability mass function (pmf) is given by[1]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_X(k) = \Pr(X = k) = \frac{\binom{K}{k} \binom{N - K}{n-k}}{\binom{N}{n}},}

where

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} is the population size,
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} is the number of success states in the population,
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is the number of draws (i.e. quantity drawn in each trial),
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} is the number of observed successes,
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \textstyle {a \choose b}} is a binomial coefficient.

The pmf is positive when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \max(0, n+K-N) \leq k \leq \min(K,n)} .

A random variable distributed hypergeometrically with parameters Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is written Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle X \sim \operatorname{Hypergeometric}(N,K,n)} and has probability mass function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle p_X(k)} above.

Combinatorial identities

As required, we have

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{0\leq k\leq \textrm{min}(n,K)} { {K \choose k} { N-K \choose n-k} \over {N \choose n} } = 1,}

which essentially follows from Vandermonde's identity from combinatorics.

Also note that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {{K \choose k} {N-K \choose n-k}\over {N \choose n}} = {{{n \choose k} {{N-n} \choose {K-k}}} \over {N \choose K}};}

This identity can be shown by expressing the binomial coefficients in terms of factorials and rearranging the latter. Additionally, it follows from the symmetry of the problem, described in two different but interchangeable ways.

For example, consider two rounds of drawing without replacement. In the first round, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} out of neutral marbles are drawn from an urn without replacement and coloured green. Then the colored marbles are put back. In the second round, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} marbles are drawn without replacement and colored red. Then, the number of marbles with both colors on them (that is, the number of marbles that have been drawn twice) has the hypergeometric distribution. The symmetry in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} stems from the fact that the two rounds are independent, and one could have started by drawing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} balls and colouring them red first.

Note that we are interested in the probability of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} successes in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} draws without replacement, since the probability of success on each trial is not the same, as the size of the remaining population changes as we remove each marble. Keep in mind not to confuse with the binomial distribution, which describes the probability of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} successes in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} draws with replacement.

Properties

Working example

The classical application of the hypergeometric distribution is sampling without replacement. Think of an urn with two colors of marbles, red and green. Define drawing a green marble as a success and drawing a red marble as a failure. Let N describe the number of all marbles in the urn (see contingency table below) and K describe the number of green marbles, then N − K corresponds to the number of red marbles. Now, standing next to the urn, you close your eyes and draw n marbles without replacement. Define X as a random variable whose outcome is k, the number of green marbles drawn in the experiment. This situation is illustrated by the following contingency table:

drawn not drawn total
green marbles k Kk K
red marbles nk N + k − n − K N − K
total n N − n N

Indeed, we are interested in calculating the probability of drawing k green marbles in n draws, given that there are K green marbles out of a total of N marbles. For this example, assume that there are 5 green and 45 red marbles in the urn. Standing next to the urn, you close your eyes and draw 10 marbles without replacement. What is the probability that exactly 4 of the 10 are green?

This problem is summarized by the following contingency table:

drawn not drawn total
green marbles k = 4 Kk = 1 K = 5
red marbles nk = 6 N + k − n − K = 39 N − K = 45
total n = 10 N − n = 40

To find the probability of drawing k green marbles in exactly n draws out of N total draws, we identify X as a hyper-geometric random variable to use the formula

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X=k) = f(k;N,K,n) = {{{K \choose k} {{N-K} \choose {n-k}}}\over {N \choose n}}.}

To intuitively explain the given formula, consider the two symmetric problems represented by the identity

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {{K \choose k} {N-K \choose n-k}\over {N \choose n}} = {{{n \choose k} {{N-n} \choose {K-k}}} \over {N \choose K}}}

  1. left-hand side - drawing a total of only n marbles out of the urn. We want to find the probability of the outcome of drawing k green marbles out of K total green marbles, and drawing n-k red marbles out of N-K red marbles, in these n rounds.
  2. right hand side - alternatively, drawing all N marbles out of the urn. We want to find the probability of the outcome of drawing k green marbles in n draws out of the total N draws, and K-k green marbles in the rest N-n draws.

Back to the calculations, we use the formula above to calculate the probability of drawing exactly k green marbles

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X=4) = f(4;50,5,10) = {{{5 \choose 4} {{45} \choose {6}}}\over {50 \choose 10}} = {5\cdot 8145060\over 10272278170} = 0.003964583\dots. }

Intuitively we would expect it to be even more unlikely that all 5 green marbles will be among the 10 drawn.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X=5) = f(5;50,5,10) = {{{5 \choose 5} {{45} \choose {5}}}\over {50 \choose 10}} = {1\cdot 1221759 \over 10272278170} = 0.0001189375\dots, }

As expected, the probability of drawing 5 green marbles is roughly 35 times less likely than that of drawing 4.

Symmetries

Swapping the roles of green and red marbles:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(k;N,K,n) = f(n-k;N,N-K,n)}

Swapping the roles of drawn and not drawn marbles:

Swapping the roles of green and drawn marbles:

These symmetries generate the dihedral group Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_4} .

Order of draws

The probability of drawing any set of green and red marbles (the hypergeometric distribution) depends only on the numbers of green and red marbles, not on the order in which they appear; i.e., it is an exchangeable distribution. As a result, the probability of drawing a green marble in the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i^{\text{th}}} draw is[2]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(G_i) = \frac{K}{N}.}

This is an ex ante probability—that is, it is based on not knowing the results of the previous draws.

Tail bounds

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X \sim \operatorname{Hypergeometric}(N,K,n)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=K/N} . Then for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 < t < K/N} we can derive the following bounds:[3]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \Pr[X\le (p - t)n] &\le e^{-n\text{D}(p-t\parallel p)} \le e^{-2t^2n}\\ \Pr[X\ge (p+t)n] &\le e^{-n\text{D}(p+t\parallel p)} \le e^{-2t^2n}\\ \end{align}\!}

where

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D(a\parallel b)=a\log\frac{a}{b}+(1-a)\log\frac{1-a}{1-b}}

is the Kullback-Leibler divergence and it is used that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D(a\parallel b) \ge 2(a-b)^2} .[4]

Note: In order to derive the previous bounds, one has to start by observing that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X = \frac{\sum_{i=1}^n Y_i}{n}} where are dependent random variables with a specific distribution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} . Because most of the theorems about bounds in sum of random variables are concerned with independent sequences of them, one has to first create a sequence Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_i} of independent random variables with the same distribution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} and apply the theorems on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X' = \frac{\sum_{i=1}^{n}Z_i}{n}} . Then, it is proved from Hoeffding [3] that the results and bounds obtained via this process hold for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} as well.

If n is larger than N/2, it can be useful to apply symmetry to "invert" the bounds, which give you the following: [4] [5]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \Pr[X\le (p - t)n] &\le e^{-(N-n)\text{D}(p+\tfrac{tn}{N-n}||p)} \le e^{-2 t^2 n \tfrac{n}{N-n}}\\ \\ \Pr[X\ge (p+t)n] &\le e^{-(N-n)\text{D}(p-\tfrac{tn}{N-n}||p)} \le e^{-2 t^2 n \tfrac{n}{N-n}}\\ \end{align}\!}

Statistical Inference

Hypergeometric test

The hypergeometric test uses the hypergeometric distribution to measure the statistical significance of having drawn a sample consisting of a specific number of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} successes (out of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} total draws) from a population of size Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} containing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} successes. In a test for over-representation of successes in the sample, the hypergeometric p-value is calculated as the probability of randomly drawing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} or more successes from the population in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} total draws. In a test for under-representation, the p-value is the probability of randomly drawing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} or fewer successes.

Biologist and statistician Ronald Fisher

The test based on the hypergeometric distribution (hypergeometric test) is identical to the corresponding one-tailed version of Fisher's exact test.[6] Reciprocally, the p-value of a two-sided Fisher's exact test can be calculated as the sum of two appropriate hypergeometric tests (for more information see[7]).

The test is often used to identify which sub-populations are over- or under-represented in a sample. This test has a wide range of applications. For example, a marketing group could use the test to understand their customer base by testing a set of known customers for over-representation of various demographic subgroups (e.g., women, people under 30).

Related distributions

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X\sim\operatorname{Hypergeometric}(N,K,n)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=K/N} .

  • If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=1} then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} has a Bernoulli distribution with parameter .
  • Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y} have a binomial distribution with parameters Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} ; this models the number of successes in the analogous sampling problem with replacement. If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} are large compared to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} is not close to 0 or 1, then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y} have similar distributions, i.e., Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X \le k) \approx P(Y \le k)} .
  • If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is large, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} are large compared to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} is not close to 0 or 1, then
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X \le k) \approx \Phi \left( \frac{k-n p}{\sqrt{n p (1-p)}} \right)}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi} is the standard normal distribution function

  • If the probabilities of drawing a green or red marble are not equal (e.g. because green marbles are bigger/easier to grasp than red marbles) then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} has a noncentral hypergeometric distribution
  • The beta-binomial distribution is a conjugate prior for the hypergeometric distribution.

The following table describes four distributions related to the number of successes in a sequence of draws:

With replacements No replacements
Given number of draws binomial distribution hypergeometric distribution
Given number of failures negative binomial distribution negative hypergeometric distribution

Multivariate hypergeometric distribution

Multivariate hypergeometric distribution
Parameters

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c \in \mathbb{N}_{+} = \lbrace 1, 2, \ldots \rbrace}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (K_1,\ldots,K_c) \in \mathbb{N}^c}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N = \sum_{i=1}^c K_i}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in \lbrace 0,\ldots,N\rbrace}
Support Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{ \mathbf{k} \in \left(\mathbb{Z}_{0+}\right)^c \, : \, \forall i\ k_i \le K_i , \sum_{i=1}^{c} k_i = n \right\}}
PMF Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\prod\limits_{i=1}^c \binom{K_i}{k_i}}{\binom{N}{n}}}
Mean Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname E(k_i) = n\frac{K_i}{N}}
Variance

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Var}(k_i) = n \frac{N-n}{N-1} \;\frac{K_i}{N} \left(1-\frac{K_i}{N}\right) }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Cov}(k_i,k_j) = -n \frac{N-n}{N-1} \;\frac{K_i}{N} \frac{K_j}{N} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Corr}(k_i,k_j) = -\sqrt{\frac{K_i K_j}{\left(N-K_i\right)\left(N-K_j\right)}}}

The model of an urn with green and red marbles can be extended to the case where there are more than two colors of marbles. If there are Ki marbles of color i in the urn and you take n marbles at random without replacement, then the number of marbles of each color in the sample (k1, k2,..., kc) has the multivariate hypergeometric distribution:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pr(X_1 = k_1, \ldots, X_c = k_c) = \frac{\prod\limits_{i=1}^c \binom{K_i}{k_i}}{\binom{N}{n}}}

This has the same relationship to the multinomial distribution that the hypergeometric distribution has to the binomial distribution—the multinomial distribution is the "with-replacement" distribution and the multivariate hypergeometric is the "without-replacement" distribution.

The properties of this distribution are given in the adjacent table,[8] where c is the number of different colors and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N=\sum_{i=1}^c K_i} is the total number of marbles in the urn.

Example

Suppose there are 5 black, 10 white, and 15 red marbles in an urn. If six marbles are chosen without replacement, the probability that exactly two of each color are chosen is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(2\text{ black}, 2\text{ white}, 2\text{ red}) = {{{5 \choose 2}{10 \choose 2} {15 \choose 2}}\over {30 \choose 6}} = 0.079575596816976}

Occurrence and applications

Application to auditing elections

Samples used for election audits and resulting chance of missing a problem

Election audits typically test a sample of machine-counted precincts to see if recounts by hand or machine match the original counts. Mismatches result in either a report or a larger recount. The sampling rates are usually defined by law, not statistical design, so for a legally defined sample size n, what is the probability of missing a problem which is present in K precincts, such as a hack or bug? This is the probability that k = 0 . Bugs are often obscure, and a hacker can minimize detection by affecting only a few precincts, which will still affect close elections, so a plausible scenario is for K to be on the order of 5% of N. Audits typically cover 1% to 10% of precincts (often 3%),[9][10][11] so they have a high chance of missing a problem. For example, if a problem is present in 5 of 100 precincts, a 3% sample has 86% probability that k = 0 so the problem would not be noticed, and only 14% probability of the problem appearing in the sample (positive k ):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \operatorname{\boldsymbol\mathcal P}\{\ X = 0\ \} & = \frac{\ \left[\ \binom{\text{Hack}}{0} \binom{ N\ -\ \text{Hack}}{ n\ -\ 0 }\ \right]\ }{\left[\ \binom{N}{n}\ \right]} = \frac{\ \left[\ \binom{N\ -\ \text{Hack}}{n}\ \right]}{\ \left[\ \binom{N}{n}\ \right]\ } = \frac{\ \left[\ \frac{\ (N\ -\ \text{Hack})!\ }{n!(N\ -\ \text{Hack}-n)!}\ \right]\ }{\left[\ \frac{N!}{n!(N\ -\ n)!}\ \right]} = \frac{\ \left[\ \frac{(N-\text{Hack})!}{(N\ -\ \text{Hack}\ -\ n)!}\ \right]\ }{\left[\ \frac{N!}{(N\ -\ n)!}\ \right]} \\[8pt] & = \frac{\ \left[\ \binom{100-5}{3}\ \right]\ }{\ \left[\ \binom{100}{3}\ \right]\ } = \frac{\ \left[\ \frac{(100-5)!}{(100-5-3)!}\ \right]\ }{\left[\ \frac{100!}{(100-3)!}\ \right]} = \frac{\ \left[\ \frac{95!}{92!}\ \right]\ }{\ \left[\ \frac{100!}{97!}\ \right]\ } = \frac{\ 95\times94\times93\ }{100\times99\times98} = 86\% \end{align} }

The sample would need 45 precincts in order to have probability under 5% that k = 0 in the sample, and thus have probability over 95% of finding the problem:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{\boldsymbol\mathcal P}\{\ X = 0\ \} = \frac{\ \left[\ \binom{100-5}{45}\ \right]\ }{\left[\ \binom{100}{45}\ \right]} = \frac{\ \left[\ \frac{95!}{50!}\ \right]\ }{\left[\ \frac{100!}{55!}\ \right]} = \frac{\ 95\times 94\times \cdots \times 51\ }{\ 100\times 99\times \cdots \times 56\ } = \frac{\ 55\times 54\times 53\times 52\times 51\ }{\ 100\times 99\times 98\times 97\times 96\ } = 4.6\% ~.}

Application to Texas hold'em poker

In hold'em poker players make the best hand they can combining the two cards in their hand with the 5 cards (community cards) eventually turned up on the table. The deck has 52 and there are 13 of each suit. For this example assume a player has 2 clubs in the hand and there are 3 cards showing on the table, 2 of which are also clubs. The player would like to know the probability of one of the next 2 cards to be shown being a club to complete the flush.
(Note that the probability calculated in this example assumes no information is known about the cards in the other players' hands; however, experienced poker players may consider how the other players place their bets (check, call, raise, or fold) in considering the probability for each scenario. Strictly speaking, the approach to calculating success probabilities outlined here is accurate in a scenario where there is just one player at the table; in a multiplayer game this probability might be adjusted somewhat based on the betting play of the opponents.)

There are 4 clubs showing so there are 9 clubs still unseen. There are 5 cards showing (2 in the hand and 3 on the table) so there are Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 52-5=47} still unseen.

The probability that one of the next two cards turned is a club can be calculated using hypergeometric with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=1, n=2, K=9} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N=47} . (about 31.64%)

The probability that both of the next two cards turned are clubs can be calculated using hypergeometric with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=2, n=2, K=9} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N=47} . (about 3.33%)

The probability that neither of the next two cards turned are clubs can be calculated using hypergeometric with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=0, n=2, K=9} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N=47} . (about 65.03%)

Application to Keno

The hypergeometric distribution is indispensable for calculating Keno odds. In Keno, 20 balls are randomly drawn from a collection of 80 numbered balls in a container, rather like American Bingo. Prior to each draw, a player selects a certain number of spots by marking a paper form supplied for this purpose. For example, a player might play a 6-spot by marking 6 numbers, each from a range of 1 through 80 inclusive. Then (after all players have taken their forms to a cashier and been given a duplicate of their marked form, and paid their wager) 20 balls are drawn. Some of the balls drawn may match some or all of the balls selected by the player. Generally speaking, the more hits (balls drawn that match player numbers selected) the greater the payoff.

For example, if a customer bets ("plays") $1 for a 6-spot (not an uncommon example) and hits 4 out of the 6, the casino would pay out $4. Payouts can vary from one casino to the next, but $4 is a typical value here. The probability of this event is:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X=4) = f(4;80,6,20) = {{{6 \choose 4} {{80-6} \choose {20-4}}}\over {80 \choose 20}} \approx 0.02853791}

Similarly, the chance for hitting 5 spots out of 6 selected is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {{{6 \choose 5} {{74} \choose {15}}} \over {80 \choose 20}} \approx 0.003095639} while a typical payout might be $88. The payout for hitting all 6 would be around $1500 (probability ≈ 0.000128985 or 7752-to-1). The only other nonzero payout might be $1 for hitting 3 numbers (i.e., you get your bet back), which has a probability near 0.129819548.

Taking the sum of products of payouts times corresponding probabilities we get an expected return of 0.70986492 or roughly 71% for a 6-spot, for a house advantage of 29%. Other spots-played have a similar expected return. This very poor return (for the player) is usually explained by the large overhead (floor space, equipment, personnel) required for the game.

See also

References

Citations

  1. ^ Rice, John A. (2007). Mathematical Statistics and Data Analysis (Third ed.). Duxbury Press. p. 42.
  2. ^ http://www.stat.yale.edu/~pollard/Courses/600.spring2010/Handouts/Symmetry%5BPolyaUrn%5D.pdf [bare URL PDF]
  3. ^ 3.0 3.1 Hoeffding, Wassily (1963), "Probability inequalities for sums of bounded random variables" (PDF), Journal of the American Statistical Association, 58 (301): 13–30, doi:10.2307/2282952, JSTOR 2282952.
  4. ^ 4.0 4.1 "Another Tail of the Hypergeometric Distribution". wordpress.com. 8 December 2015. Retrieved 19 March 2018.
  5. ^ Serfling, Robert (1974), "Probability inequalities for the sum in sampling without replacement", The Annals of Statistics, 2 (1): 39–48, doi:10.1214/aos/1176342611.
  6. ^ Rivals, I.; Personnaz, L.; Taing, L.; Potier, M.-C (2007). "Enrichment or depletion of a GO category within a class of genes: which test?". Bioinformatics. 23 (4): 401–407. doi:10.1093/bioinformatics/btl633. PMID 17182697.
  7. ^ K. Preacher and N. Briggs. "Calculation for Fisher's Exact Test: An interactive calculation tool for Fisher's exact probability test for 2 x 2 tables (interactive page)".
  8. ^ Duan, X. G. (2021). "Better understanding of the multivariate hypergeometric distribution with implications in design-based survey sampling". ArXiv preprint. arXiv:2101.00548.
  9. ^ Glazer, Amanda; Spertus, Jacob (10 February 2020) [8 March 2020]. Start spreading the news: New York's post-election audit has major flaws (white paper). Elsevier. doi:10.2139/ssrn.3536011. SSRN 3536011. SSRN 3536011. Retrieved 4 December 2023 – via SSRN.com.
  10. ^ "State audit laws". Verified Voting. 10 February 2017. Archived from the original on 4 January 2020. Retrieved 2 April 2018.
  11. ^ "Post-election audits". ncsl.org. National Conference of State Legislatures. Retrieved 2 April 2018.

Sources

External links