Noncentral beta distribution

From English Wikipedia @ Freddythechick
Noncentral Beta
Notation Beta(α, β, λ)
Parameters α > 0 shape (real)
β > 0 shape (real)
λ ≥ 0 noncentrality (real)
Support
PDF (type I) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \sum _{j=0}^{\infty }e^{-\lambda /2}{\frac {\left({\frac {\lambda }{2}}\right)^{j}}{j!}}{\frac {x^{\alpha +j-1}\left(1-x\right)^{\beta -1}}{\mathrm {B} \left(\alpha +j,\beta \right)}}}
CDF (type I)
Mean (type I) (see Confluent hypergeometric function)
Variance (type I) where is the mean. (see Confluent hypergeometric function)

In probability theory and statistics, the noncentral beta distribution is a continuous probability distribution that is a noncentral generalization of the (central) beta distribution.

The noncentral beta distribution (Type I) is the distribution of the ratio

where is a noncentral chi-squared random variable with degrees of freedom m and noncentrality parameter , and is a central chi-squared random variable with degrees of freedom n, independent of .[1] In this case,

A Type II noncentral beta distribution is the distribution of the ratio

where the noncentral chi-squared variable is in the denominator only.[1] If follows the type II distribution, then follows a type I distribution.

Cumulative distribution function

The Type I cumulative distribution function is usually represented as a Poisson mixture of central beta random variables:[1]

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle F(x)=\sum _{j=0}^{\infty }P(j)I_{x}(\alpha +j,\beta ),}

where λ is the noncentrality parameter, P(.) is the Poisson(λ/2) probability mass function, \alpha=m/2 and \beta=n/2 are shape parameters, and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle I_{x}(a,b)} is the incomplete beta function. That is,

The Type II cumulative distribution function in mixture form is

Algorithms for evaluating the noncentral beta distribution functions are given by Posten[2] and Chattamvelli.[1]

Probability density function

The (Type I) probability density function for the noncentral beta distribution is:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \sum_{j=0}^\infin \frac{1}{j!}\left(\frac{\lambda}{2}\right)^je^{-\lambda/2}\frac{x^{\alpha+j-1}(1-x)^{\beta-1}}{B(\alpha+j,\beta)}. }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} is the beta function, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta} are the shape parameters, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} is the noncentrality parameter. The density of Y is the same as that of 1-X with the degrees of freedom reversed.[1]

Related distributions

Transformations

If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X\sim\mbox{Beta}\left(\alpha,\beta,\lambda\right)} , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\beta X}{\alpha (1-X)}} follows a noncentral F-distribution with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\alpha, 2\beta} degrees of freedom, and non-centrality parameter .

If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} follows a noncentral F-distribution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_{\mu_{1}, \mu_{2}}\left( \lambda \right)} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu_{1}} numerator degrees of freedom and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu_{2}} denominator degrees of freedom, then

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = \cfrac{\cfrac{\mu_{2}}{\mu_{1}}}{\cfrac{\mu_{2}}{\mu_{1}} + X^{-1} } }

follows a noncentral Beta distribution:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z \sim \mbox{Beta}\left(\frac{1}{2}\mu_{1},\frac{1}{2}\mu_{2},\lambda\right)} .

This is derived from making a straightforward transformation.

Special cases

When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda = 0} , the noncentral beta distribution is equivalent to the (central) beta distribution.

References

Citations

  1. ^ 1.0 1.1 1.2 1.3 1.4 Chattamvelli, R. (1995). "A Note on the Noncentral Beta Distribution Function". The American Statistician. 49 (2): 231–234. doi:10.1080/00031305.1995.10476151.
  2. ^ Posten, H.O. (1993). "An Effective Algorithm for the Noncentral Beta Distribution Function". The American Statistician. 47 (2): 129–131. doi:10.1080/00031305.1993.10475957. JSTOR 2685195.

Sources