Template:SI photon units/doc

From English Wikipedia @ Freddythechick

Usage

This template displays a table of SI photon units for usage in articles about physics or radiometry. It may also serve as a navigation box at the end of corresponding articles.

The template supports three optional parameters to finetune its behaviour.

Parameters

Documentation of parameters:

Parameter 1

1 = undefined or empty

Template will not display the string "Table X. " in front of the table's title "SI photon units".

1 = <number>

The template will display the table number as part of the table header in the following form: "Table <number>. SI photon units.", where <number> is a placeholder for the number (or other table designation) given as parameter.

Parameter 2

2 = undefined or empty

Template will not show "(Compare)" links in the table footer.

2 = "self"

The template will display "(Compare) links in the table footer to jump to the corresponding photometry and radiometry tables within the same article. In order for this to work, the photometry and radiometry tables must be included using the templates {{SI light units}} and {{SI radiometry units}}. It is not necessary to reload the article for comparison.

2 = any non-empty string other than "self"

The template will display "(Compare)" links (as above). However, the links will point to the corresponding photometry and radiometry tables in their corresponding articles "Photometry (optics)" and "Radiometry", not to within the article, where the {{SI photon units}} template has been included. This is useful, if the other tables should not be included in the article.

Parameter 3

3 = undefined

The table's footnotes will be grouped in a reference group named "nb" and displayed immediately after the table. In order to avoid conflicts with other references in the article, it is advisable to use other group names for external references (default is ""). Otherwise these external references will be listed after the table as well.

3 = empty, that is: ""

The table's footnotes will be grouped in the article's default group "", as used for all other references without specific group names. It is important to manually include a <references/> tag or the {{Reflist}} template somewhere in the article. This is the place where the footnotes will show up.

3 = <groupname>

The table's footnotes will be grouped in a reference group named as specified in the groupname. It is important to manually include a <references group="<groupname>"/> tag or the {{Reflist|group=<groupname>}} template somewhere in the article. This is the place where the footnotes will show up. Try to use a short groupname, as the table will look nicer this way.

Examples

Some easy examples:

<syntaxhighlight lang="wikitext">

Quantity Unit Dimension Notes
Name Symbol[nb 1] Name Symbol
photon energy n 1 count of photons n with energy Qp = hc/λ.[nb 2]
photon flux Φq count per second s−1 T−1 photons per unit time, dn/dt with n = photon number.
also called photon power
photon intensity I count per steradian per second sr−1⋅s−1 T−1 dn/dω
photon radiance Lq count per square metre per steradian per second m−2⋅sr−1⋅s−1 L−2T−1 d2n/(dA cos(θ) dω)
photon irradiance Eq count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
photon exitance M count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
See also:
  1. ^ Standards organizations recommend that photon quantities be denoted with a suffix "q" (for "quantum") to avoid confusion with radiometric and photometric quantities.
  2. ^ The energy of a single photon at wavelength λ is Qp = hc/λ with h = Planck constant and c = velocity of light.

Quantity Unit Dimension Notes
Name Symbol[nb 1] Name Symbol
photon energy n 1 count of photons n with energy Qp = hc/λ.[nb 2]
photon flux Φq count per second s−1 T−1 photons per unit time, dn/dt with n = photon number.
also called photon power
photon intensity I count per steradian per second sr−1⋅s−1 T−1 dn/dω
photon radiance Lq count per square metre per steradian per second m−2⋅sr−1⋅s−1 L−2T−1 d2n/(dA cos(θ) dω)
photon irradiance Eq count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
photon exitance M count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
See also:
  1. ^ Standards organizations recommend that photon quantities be denoted with a suffix "q" (for "quantum") to avoid confusion with radiometric and photometric quantities.
  2. ^ The energy of a single photon at wavelength λ is Qp = hc/λ with h = Planck constant and c = velocity of light.

Quantity Unit Dimension Notes
Name Symbol[nb 1] Name Symbol
photon energy n 1 count of photons n with energy Qp = hc/λ.[nb 2]
photon flux Φq count per second s−1 T−1 photons per unit time, dn/dt with n = photon number.
also called photon power
photon intensity I count per steradian per second sr−1⋅s−1 T−1 dn/dω
photon radiance Lq count per square metre per steradian per second m−2⋅sr−1⋅s−1 L−2T−1 d2n/(dA cos(θ) dω)
photon irradiance Eq count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
photon exitance M count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
See also:
  1. ^ Standards organizations recommend that photon quantities be denoted with a suffix "q" (for "quantum") to avoid confusion with radiometric and photometric quantities.
  2. ^ The energy of a single photon at wavelength λ is Qp = hc/λ with h = Planck constant and c = velocity of light.

Quantity Unit Dimension Notes
Name Symbol[nb 1] Name Symbol
photon energy n 1 count of photons n with energy Qp = hc/λ.[nb 2]
photon flux Φq count per second s−1 T−1 photons per unit time, dn/dt with n = photon number.
also called photon power
photon intensity I count per steradian per second sr−1⋅s−1 T−1 dn/dω
photon radiance Lq count per square metre per steradian per second m−2⋅sr−1⋅s−1 L−2T−1 d2n/(dA cos(θ) dω)
photon irradiance Eq count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
photon exitance M count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
See also:
  1. ^ Standards organizations recommend that photon quantities be denoted with a suffix "q" (for "quantum") to avoid confusion with radiometric and photometric quantities.
  2. ^ The energy of a single photon at wavelength λ is Qp = hc/λ with h = Planck constant and c = velocity of light.

Quantity Unit Dimension Notes
Name Symbol[1] Name Symbol
photon energy n 1 count of photons n with energy Qp = hc/λ.[2]
photon flux Φq count per second s−1 T−1 photons per unit time, dn/dt with n = photon number.
also called photon power
photon intensity I count per steradian per second sr−1⋅s−1 T−1 dn/dω
photon radiance Lq count per square metre per steradian per second m−2⋅sr−1⋅s−1 L−2T−1 d2n/(dA cos(θ) dω)
photon irradiance Eq count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
photon exitance M count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
See also:

Quantity Unit Dimension Notes
Name Symbol[1] Name Symbol
photon energy n 1 count of photons n with energy Qp = hc/λ.[2]
photon flux Φq count per second s−1 T−1 photons per unit time, dn/dt with n = photon number.
also called photon power
photon intensity I count per steradian per second sr−1⋅s−1 T−1 dn/dω
photon radiance Lq count per square metre per steradian per second m−2⋅sr−1⋅s−1 L−2T−1 d2n/(dA cos(θ) dω)
photon irradiance Eq count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
photon exitance M count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
See also:

Quantity Unit Dimension Notes
Name Symbol[1] Name Symbol
photon energy n 1 count of photons n with energy Qp = hc/λ.[2]
photon flux Φq count per second s−1 T−1 photons per unit time, dn/dt with n = photon number.
also called photon power
photon intensity I count per steradian per second sr−1⋅s−1 T−1 dn/dω
photon radiance Lq count per square metre per steradian per second m−2⋅sr−1⋅s−1 L−2T−1 d2n/(dA cos(θ) dω)
photon irradiance Eq count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
photon exitance M count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
See also:

Quantity Unit Dimension Notes
Name Symbol[Note 1] Name Symbol
photon energy n 1 count of photons n with energy Qp = hc/λ.[Note 2]
photon flux Φq count per second s−1 T−1 photons per unit time, dn/dt with n = photon number.
also called photon power
photon intensity I count per steradian per second sr−1⋅s−1 T−1 dn/dω
photon radiance Lq count per square metre per steradian per second m−2⋅sr−1⋅s−1 L−2T−1 d2n/(dA cos(θ) dω)
photon irradiance Eq count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
photon exitance M count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
See also:

Quantity Unit Dimension Notes
Name Symbol[notes 1] Name Symbol
photon energy n 1 count of photons n with energy Qp = hc/λ.[notes 2]
photon flux Φq count per second s−1 T−1 photons per unit time, dn/dt with n = photon number.
also called photon power
photon intensity I count per steradian per second sr−1⋅s−1 T−1 dn/dω
photon radiance Lq count per square metre per steradian per second m−2⋅sr−1⋅s−1 L−2T−1 d2n/(dA cos(θ) dω)
photon irradiance Eq count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
photon exitance M count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
See also:

Quantity Unit Dimension Notes
Name Symbol[Note 1] Name Symbol
photon energy n 1 count of photons n with energy Qp = hc/λ.[Note 2]
photon flux Φq count per second s−1 T−1 photons per unit time, dn/dt with n = photon number.
also called photon power
photon intensity I count per steradian per second sr−1⋅s−1 T−1 dn/dω
photon radiance Lq count per square metre per steradian per second m−2⋅sr−1⋅s−1 L−2T−1 d2n/(dA cos(θ) dω)
photon irradiance Eq count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
photon exitance M count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
See also:

</syntaxhighlight>

Combining the tables in a single article (individually grouped footnotes in group "nb"):

<syntaxhighlight lang="wikitext">

Quantity Unit Dimension
[nb 1]
Notes
Name Symbol[nb 2] Name Symbol
Luminous energy Qv[nb 3] lumen second lm⋅s TJ The lumen second is sometimes called the talbot.
Luminous flux, luminous power Φv[nb 3] lumen (= candela steradian) lm (= cd⋅sr) J Luminous energy per unit time
Luminous intensity Iv candela (= lumen per steradian) cd (= lm/sr) J Luminous flux per unit solid angle
Luminance Lv candela per square metre cd/m2 (= lm/(sr⋅m2)) L−2J Luminous flux per unit solid angle per unit projected source area. The candela per square metre is sometimes called the nit.
Illuminance Ev lux (= lumen per square metre) lx (= lm/m2) L−2J Luminous flux incident on a surface
Luminous exitance, luminous emittance Mv lumen per square metre lm/m2 L−2J Luminous flux emitted from a surface
Luminous exposure Hv lux second lx⋅s L−2TJ Time-integrated illuminance
Luminous energy density ωv lumen second per cubic metre lm⋅s/m3 L−3TJ
Luminous efficacy (of radiation) K lumen per watt lm/W M−1L−2T3J Ratio of luminous flux to radiant flux
Luminous efficacy (of a source) η[nb 3] lumen per watt lm/W M−1L−2T3J Ratio of luminous flux to power consumption
Luminous efficiency, luminous coefficient V 1 Luminous efficacy normalized by the maximum possible efficacy
See also:
  1. ^ The symbols in this column denote dimensions; "L", "T" and "J" are for length, time and luminous intensity respectively, not the symbols for the units litre, tesla and joule.
  2. ^ Standards organizations recommend that photometric quantities be denoted with a subscript "v" (for "visual") to avoid confusion with radiometric or photon quantities. For example: USA Standard Letter Symbols for Illuminating Engineering USAS Z7.1-1967, Y10.18-1967
  3. ^ 3.0 3.1 3.2 Alternative symbols sometimes seen: W for luminous energy, P or F for luminous flux, and ρ for luminous efficacy of a source.

Quantity Unit Dimension Notes
Name Symbol[nb 1] Name Symbol
Radiant energy Qe[nb 2] joule J ML2T−2 Energy of electromagnetic radiation.
Radiant energy density we joule per cubic metre J/m3 ML−1T−2 Radiant energy per unit volume.
Radiant flux Φe[nb 2] watt W = J/s ML2T−3 Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called luminosity in Astronomy.
Spectral flux Φe,ν[nb 3] watt per hertz W/Hz ML2T −2 Radiant flux per unit frequency or wavelength. The latter is commonly measured in W⋅nm−1.
Φe,λ[nb 4] watt per metre W/m MLT−3
Radiant intensity Ie,Ω[nb 5] watt per steradian W/sr ML2T−3 Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity.
Spectral intensity Ie,Ω,ν[nb 3] watt per steradian per hertz W⋅sr−1⋅Hz−1 ML2T−2 Radiant intensity per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅nm−1. This is a directional quantity.
Ie,Ω,λ[nb 4] watt per steradian per metre W⋅sr−1⋅m−1 MLT−3
Radiance Le,Ω[nb 5] watt per steradian per square metre W⋅sr−1⋅m−2 MT−3 Radiant flux emitted, reflected, transmitted or received by a surface, per unit solid angle per unit projected area. This is a directional quantity. This is sometimes also confusingly called "intensity".
Spectral radiance
Specific intensity
Le,Ω,ν[nb 3] watt per steradian per square metre per hertz W⋅sr−1⋅m−2⋅Hz−1 MT−2 Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅m−2⋅nm−1. This is a directional quantity. This is sometimes also confusingly called "spectral intensity".
Le,Ω,λ[nb 4] watt per steradian per square metre, per metre W⋅sr−1⋅m−3 ML−1T−3
Irradiance
Flux density
Ee[nb 2] watt per square metre W/m2 MT−3 Radiant flux received by a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral irradiance
Spectral flux density
Ee,ν[nb 3] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Irradiance of a surface per unit frequency or wavelength. This is sometimes also confusingly called "spectral intensity". Non-SI units of spectral flux density include jansky (1 Jy = 10−26 W⋅m−2⋅Hz−1) and solar flux unit (1 sfu = 10−22 W⋅m−2⋅Hz−1 = 104 Jy).
Ee,λ[nb 4] watt per square metre, per metre W/m3 ML−1T−3
Radiosity Je[nb 2] watt per square metre W/m2 MT−3 Radiant flux leaving (emitted, reflected and transmitted by) a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral radiosity Je,ν[nb 3] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Radiosity of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. This is sometimes also confusingly called "spectral intensity".
Je,λ[nb 4] watt per square metre, per metre W/m3 ML−1T−3
Radiant exitance Me[nb 2] watt per square metre W/m2 MT−3 Radiant flux emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this quantity. This is sometimes also confusingly called "intensity".
Spectral exitance Me,ν[nb 3] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Radiant exitance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. "Spectral emittance" is an old term for this quantity. This is sometimes also confusingly called "spectral intensity".
Me,λ[nb 4] watt per square metre, per metre W/m3 ML−1T−3
Radiant exposure He joule per square metre J/m2 MT−2 Radiant energy received by a surface per unit area, or equivalently irradiance of a surface integrated over time of irradiation. This is sometimes also called "radiant fluence".
Spectral exposure He,ν[nb 3] joule per square metre per hertz J⋅m−2⋅Hz−1 MT−1 Radiant exposure of a surface per unit frequency or wavelength. The latter is commonly measured in J⋅m−2⋅nm−1. This is sometimes also called "spectral fluence".
He,λ[nb 4] joule per square metre, per metre J/m3 ML−1T−2
See also:
  1. ^ Standards organizations recommend that radiometric quantities should be denoted with suffix "e" (for "energetic") to avoid confusion with photometric or photon quantities.
  2. ^ 2.0 2.1 2.2 2.3 2.4 Alternative symbols sometimes seen: W or E for radiant energy, P or F for radiant flux, I for irradiance, W for radiant exitance.
  3. ^ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Spectral quantities given per unit frequency are denoted with suffix "ν" (Greek letter nu, not to be confused with a letter "v", indicating a photometric quantity.)
  4. ^ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Spectral quantities given per unit wavelength are denoted with suffix "λ".
  5. ^ 5.0 5.1 Directional quantities are denoted with suffix "Ω".

Quantity Unit Dimension Notes
Name Symbol[nb 1] Name Symbol
photon energy n 1 count of photons n with energy Qp = hc/λ.[nb 2]
photon flux Φq count per second s−1 T−1 photons per unit time, dn/dt with n = photon number.
also called photon power
photon intensity I count per steradian per second sr−1⋅s−1 T−1 dn/dω
photon radiance Lq count per square metre per steradian per second m−2⋅sr−1⋅s−1 L−2T−1 d2n/(dA cos(θ) dω)
photon irradiance Eq count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
photon exitance M count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
See also:
  1. ^ Standards organizations recommend that photon quantities be denoted with a suffix "q" (for "quantum") to avoid confusion with radiometric and photometric quantities.
  2. ^ The energy of a single photon at wavelength λ is Qp = hc/λ with h = Planck constant and c = velocity of light.

</syntaxhighlight>

Combining the tables in a single article (individual footnotes in separately named groups, f.e. "T1", "T2", and "T3"):

<syntaxhighlight lang="wikitext">

Quantity Unit Dimension
[T1 1]
Notes
Name Symbol[T1 2] Name Symbol
Luminous energy Qv[T1 3] lumen second lm⋅s TJ The lumen second is sometimes called the talbot.
Luminous flux, luminous power Φv[T1 3] lumen (= candela steradian) lm (= cd⋅sr) J Luminous energy per unit time
Luminous intensity Iv candela (= lumen per steradian) cd (= lm/sr) J Luminous flux per unit solid angle
Luminance Lv candela per square metre cd/m2 (= lm/(sr⋅m2)) L−2J Luminous flux per unit solid angle per unit projected source area. The candela per square metre is sometimes called the nit.
Illuminance Ev lux (= lumen per square metre) lx (= lm/m2) L−2J Luminous flux incident on a surface
Luminous exitance, luminous emittance Mv lumen per square metre lm/m2 L−2J Luminous flux emitted from a surface
Luminous exposure Hv lux second lx⋅s L−2TJ Time-integrated illuminance
Luminous energy density ωv lumen second per cubic metre lm⋅s/m3 L−3TJ
Luminous efficacy (of radiation) K lumen per watt lm/W M−1L−2T3J Ratio of luminous flux to radiant flux
Luminous efficacy (of a source) η[T1 3] lumen per watt lm/W M−1L−2T3J Ratio of luminous flux to power consumption
Luminous efficiency, luminous coefficient V 1 Luminous efficacy normalized by the maximum possible efficacy
See also:
  1. ^ The symbols in this column denote dimensions; "L", "T" and "J" are for length, time and luminous intensity respectively, not the symbols for the units litre, tesla and joule.
  2. ^ Standards organizations recommend that photometric quantities be denoted with a subscript "v" (for "visual") to avoid confusion with radiometric or photon quantities. For example: USA Standard Letter Symbols for Illuminating Engineering USAS Z7.1-1967, Y10.18-1967
  3. ^ 3.0 3.1 3.2 Alternative symbols sometimes seen: W for luminous energy, P or F for luminous flux, and ρ for luminous efficacy of a source.

Quantity Unit Dimension Notes
Name Symbol[T2 1] Name Symbol
Radiant energy Qe[T2 2] joule J ML2T−2 Energy of electromagnetic radiation.
Radiant energy density we joule per cubic metre J/m3 ML−1T−2 Radiant energy per unit volume.
Radiant flux Φe[T2 2] watt W = J/s ML2T−3 Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called luminosity in Astronomy.
Spectral flux Φe,ν[T2 3] watt per hertz W/Hz ML2T −2 Radiant flux per unit frequency or wavelength. The latter is commonly measured in W⋅nm−1.
Φe,λ[T2 4] watt per metre W/m MLT−3
Radiant intensity Ie,Ω[T2 5] watt per steradian W/sr ML2T−3 Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity.
Spectral intensity Ie,Ω,ν[T2 3] watt per steradian per hertz W⋅sr−1⋅Hz−1 ML2T−2 Radiant intensity per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅nm−1. This is a directional quantity.
Ie,Ω,λ[T2 4] watt per steradian per metre W⋅sr−1⋅m−1 MLT−3
Radiance Le,Ω[T2 5] watt per steradian per square metre W⋅sr−1⋅m−2 MT−3 Radiant flux emitted, reflected, transmitted or received by a surface, per unit solid angle per unit projected area. This is a directional quantity. This is sometimes also confusingly called "intensity".
Spectral radiance
Specific intensity
Le,Ω,ν[T2 3] watt per steradian per square metre per hertz W⋅sr−1⋅m−2⋅Hz−1 MT−2 Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅m−2⋅nm−1. This is a directional quantity. This is sometimes also confusingly called "spectral intensity".
Le,Ω,λ[T2 4] watt per steradian per square metre, per metre W⋅sr−1⋅m−3 ML−1T−3
Irradiance
Flux density
Ee[T2 2] watt per square metre W/m2 MT−3 Radiant flux received by a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral irradiance
Spectral flux density
Ee,ν[T2 3] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Irradiance of a surface per unit frequency or wavelength. This is sometimes also confusingly called "spectral intensity". Non-SI units of spectral flux density include jansky (1 Jy = 10−26 W⋅m−2⋅Hz−1) and solar flux unit (1 sfu = 10−22 W⋅m−2⋅Hz−1 = 104 Jy).
Ee,λ[T2 4] watt per square metre, per metre W/m3 ML−1T−3
Radiosity Je[T2 2] watt per square metre W/m2 MT−3 Radiant flux leaving (emitted, reflected and transmitted by) a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral radiosity Je,ν[T2 3] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Radiosity of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. This is sometimes also confusingly called "spectral intensity".
Je,λ[T2 4] watt per square metre, per metre W/m3 ML−1T−3
Radiant exitance Me[T2 2] watt per square metre W/m2 MT−3 Radiant flux emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this quantity. This is sometimes also confusingly called "intensity".
Spectral exitance Me,ν[T2 3] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Radiant exitance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. "Spectral emittance" is an old term for this quantity. This is sometimes also confusingly called "spectral intensity".
Me,λ[T2 4] watt per square metre, per metre W/m3 ML−1T−3
Radiant exposure He joule per square metre J/m2 MT−2 Radiant energy received by a surface per unit area, or equivalently irradiance of a surface integrated over time of irradiation. This is sometimes also called "radiant fluence".
Spectral exposure He,ν[T2 3] joule per square metre per hertz J⋅m−2⋅Hz−1 MT−1 Radiant exposure of a surface per unit frequency or wavelength. The latter is commonly measured in J⋅m−2⋅nm−1. This is sometimes also called "spectral fluence".
He,λ[T2 4] joule per square metre, per metre J/m3 ML−1T−2
See also:
  1. ^ Standards organizations recommend that radiometric quantities should be denoted with suffix "e" (for "energetic") to avoid confusion with photometric or photon quantities.
  2. ^ 2.0 2.1 2.2 2.3 2.4 Alternative symbols sometimes seen: W or E for radiant energy, P or F for radiant flux, I for irradiance, W for radiant exitance.
  3. ^ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Spectral quantities given per unit frequency are denoted with suffix "ν" (Greek letter nu, not to be confused with a letter "v", indicating a photometric quantity.)
  4. ^ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Spectral quantities given per unit wavelength are denoted with suffix "λ".
  5. ^ 5.0 5.1 Directional quantities are denoted with suffix "Ω".

Quantity Unit Dimension Notes
Name Symbol[T3 1] Name Symbol
photon energy n 1 count of photons n with energy Qp = hc/λ.[T3 2]
photon flux Φq count per second s−1 T−1 photons per unit time, dn/dt with n = photon number.
also called photon power
photon intensity I count per steradian per second sr−1⋅s−1 T−1 dn/dω
photon radiance Lq count per square metre per steradian per second m−2⋅sr−1⋅s−1 L−2T−1 d2n/(dA cos(θ) dω)
photon irradiance Eq count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
photon exitance M count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
See also:
  1. ^ Standards organizations recommend that photon quantities be denoted with a suffix "q" (for "quantum") to avoid confusion with radiometric and photometric quantities.
  2. ^ The energy of a single photon at wavelength λ is Qp = hc/λ with h = Planck constant and c = velocity of light.

</syntaxhighlight>

Combining the tables in a single article (combined footnotes f.e. in group "nb"):

<syntaxhighlight lang="wikitext">

Quantity Unit Dimension
[nb 1]
Notes
Name Symbol[nb 2] Name Symbol
Luminous energy Qv[nb 3] lumen second lm⋅s TJ The lumen second is sometimes called the talbot.
Luminous flux, luminous power Φv[nb 3] lumen (= candela steradian) lm (= cd⋅sr) J Luminous energy per unit time
Luminous intensity Iv candela (= lumen per steradian) cd (= lm/sr) J Luminous flux per unit solid angle
Luminance Lv candela per square metre cd/m2 (= lm/(sr⋅m2)) L−2J Luminous flux per unit solid angle per unit projected source area. The candela per square metre is sometimes called the nit.
Illuminance Ev lux (= lumen per square metre) lx (= lm/m2) L−2J Luminous flux incident on a surface
Luminous exitance, luminous emittance Mv lumen per square metre lm/m2 L−2J Luminous flux emitted from a surface
Luminous exposure Hv lux second lx⋅s L−2TJ Time-integrated illuminance
Luminous energy density ωv lumen second per cubic metre lm⋅s/m3 L−3TJ
Luminous efficacy (of radiation) K lumen per watt lm/W M−1L−2T3J Ratio of luminous flux to radiant flux
Luminous efficacy (of a source) η[nb 3] lumen per watt lm/W M−1L−2T3J Ratio of luminous flux to power consumption
Luminous efficiency, luminous coefficient V 1 Luminous efficacy normalized by the maximum possible efficacy
See also:

Quantity Unit Dimension Notes
Name Symbol[nb 4] Name Symbol
Radiant energy Qe[nb 5] joule J ML2T−2 Energy of electromagnetic radiation.
Radiant energy density we joule per cubic metre J/m3 ML−1T−2 Radiant energy per unit volume.
Radiant flux Φe[nb 5] watt W = J/s ML2T−3 Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called luminosity in Astronomy.
Spectral flux Φe,ν[nb 6] watt per hertz W/Hz ML2T −2 Radiant flux per unit frequency or wavelength. The latter is commonly measured in W⋅nm−1.
Φe,λ[nb 7] watt per metre W/m MLT−3
Radiant intensity Ie,Ω[nb 8] watt per steradian W/sr ML2T−3 Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity.
Spectral intensity Ie,Ω,ν[nb 6] watt per steradian per hertz W⋅sr−1⋅Hz−1 ML2T−2 Radiant intensity per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅nm−1. This is a directional quantity.
Ie,Ω,λ[nb 7] watt per steradian per metre W⋅sr−1⋅m−1 MLT−3
Radiance Le,Ω[nb 8] watt per steradian per square metre W⋅sr−1⋅m−2 MT−3 Radiant flux emitted, reflected, transmitted or received by a surface, per unit solid angle per unit projected area. This is a directional quantity. This is sometimes also confusingly called "intensity".
Spectral radiance
Specific intensity
Le,Ω,ν[nb 6] watt per steradian per square metre per hertz W⋅sr−1⋅m−2⋅Hz−1 MT−2 Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅m−2⋅nm−1. This is a directional quantity. This is sometimes also confusingly called "spectral intensity".
Le,Ω,λ[nb 7] watt per steradian per square metre, per metre W⋅sr−1⋅m−3 ML−1T−3
Irradiance
Flux density
Ee[nb 5] watt per square metre W/m2 MT−3 Radiant flux received by a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral irradiance
Spectral flux density
Ee,ν[nb 6] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Irradiance of a surface per unit frequency or wavelength. This is sometimes also confusingly called "spectral intensity". Non-SI units of spectral flux density include jansky (1 Jy = 10−26 W⋅m−2⋅Hz−1) and solar flux unit (1 sfu = 10−22 W⋅m−2⋅Hz−1 = 104 Jy).
Ee,λ[nb 7] watt per square metre, per metre W/m3 ML−1T−3
Radiosity Je[nb 5] watt per square metre W/m2 MT−3 Radiant flux leaving (emitted, reflected and transmitted by) a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral radiosity Je,ν[nb 6] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Radiosity of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. This is sometimes also confusingly called "spectral intensity".
Je,λ[nb 7] watt per square metre, per metre W/m3 ML−1T−3
Radiant exitance Me[nb 5] watt per square metre W/m2 MT−3 Radiant flux emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this quantity. This is sometimes also confusingly called "intensity".
Spectral exitance Me,ν[nb 6] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Radiant exitance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. "Spectral emittance" is an old term for this quantity. This is sometimes also confusingly called "spectral intensity".
Me,λ[nb 7] watt per square metre, per metre W/m3 ML−1T−3
Radiant exposure He joule per square metre J/m2 MT−2 Radiant energy received by a surface per unit area, or equivalently irradiance of a surface integrated over time of irradiation. This is sometimes also called "radiant fluence".
Spectral exposure He,ν[nb 6] joule per square metre per hertz J⋅m−2⋅Hz−1 MT−1 Radiant exposure of a surface per unit frequency or wavelength. The latter is commonly measured in J⋅m−2⋅nm−1. This is sometimes also called "spectral fluence".
He,λ[nb 7] joule per square metre, per metre J/m3 ML−1T−2
See also:

Quantity Unit Dimension Notes
Name Symbol[nb 9] Name Symbol
photon energy n 1 count of photons n with energy Qp = hc/λ.[nb 10]
photon flux Φq count per second s−1 T−1 photons per unit time, dn/dt with n = photon number.
also called photon power
photon intensity I count per steradian per second sr−1⋅s−1 T−1 dn/dω
photon radiance Lq count per square metre per steradian per second m−2⋅sr−1⋅s−1 L−2T−1 d2n/(dA cos(θ) dω)
photon irradiance Eq count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
photon exitance M count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
See also:

...

  1. ^ The symbols in this column denote dimensions; "L", "T" and "J" are for length, time and luminous intensity respectively, not the symbols for the units litre, tesla and joule.
  2. ^ Standards organizations recommend that photometric quantities be denoted with a subscript "v" (for "visual") to avoid confusion with radiometric or photon quantities. For example: USA Standard Letter Symbols for Illuminating Engineering USAS Z7.1-1967, Y10.18-1967
  3. ^ 3.0 3.1 3.2 Alternative symbols sometimes seen: W for luminous energy, P or F for luminous flux, and ρ for luminous efficacy of a source.
  4. ^ Standards organizations recommend that radiometric quantities should be denoted with suffix "e" (for "energetic") to avoid confusion with photometric or photon quantities.
  5. ^ 5.0 5.1 5.2 5.3 5.4 Alternative symbols sometimes seen: W or E for radiant energy, P or F for radiant flux, I for irradiance, W for radiant exitance.
  6. ^ 6.0 6.1 6.2 6.3 6.4 6.5 6.6 Spectral quantities given per unit frequency are denoted with suffix "ν" (Greek letter nu, not to be confused with a letter "v", indicating a photometric quantity.)
  7. ^ 7.0 7.1 7.2 7.3 7.4 7.5 7.6 Spectral quantities given per unit wavelength are denoted with suffix "λ".
  8. ^ 8.0 8.1 Directional quantities are denoted with suffix "Ω".
  9. ^ Standards organizations recommend that photon quantities be denoted with a suffix "q" (for "quantum") to avoid confusion with radiometric and photometric quantities.
  10. ^ The energy of a single photon at wavelength λ is Qp = hc/λ with h = Planck constant and c = velocity of light.

</syntaxhighlight>

Combining the tables in a single article (combined footnotes with default references):

<syntaxhighlight lang="wikitext">

Quantity Unit Dimension
[3]
Notes
Name Symbol[4] Name Symbol
Luminous energy Qv[5] lumen second lm⋅s TJ The lumen second is sometimes called the talbot.
Luminous flux, luminous power Φv[5] lumen (= candela steradian) lm (= cd⋅sr) J Luminous energy per unit time
Luminous intensity Iv candela (= lumen per steradian) cd (= lm/sr) J Luminous flux per unit solid angle
Luminance Lv candela per square metre cd/m2 (= lm/(sr⋅m2)) L−2J Luminous flux per unit solid angle per unit projected source area. The candela per square metre is sometimes called the nit.
Illuminance Ev lux (= lumen per square metre) lx (= lm/m2) L−2J Luminous flux incident on a surface
Luminous exitance, luminous emittance Mv lumen per square metre lm/m2 L−2J Luminous flux emitted from a surface
Luminous exposure Hv lux second lx⋅s L−2TJ Time-integrated illuminance
Luminous energy density ωv lumen second per cubic metre lm⋅s/m3 L−3TJ
Luminous efficacy (of radiation) K lumen per watt lm/W M−1L−2T3J Ratio of luminous flux to radiant flux
Luminous efficacy (of a source) η[5] lumen per watt lm/W M−1L−2T3J Ratio of luminous flux to power consumption
Luminous efficiency, luminous coefficient V 1 Luminous efficacy normalized by the maximum possible efficacy
See also:

Quantity Unit Dimension Notes
Name Symbol[6] Name Symbol
Radiant energy Qe[7] joule J ML2T−2 Energy of electromagnetic radiation.
Radiant energy density we joule per cubic metre J/m3 ML−1T−2 Radiant energy per unit volume.
Radiant flux Φe[7] watt W = J/s ML2T−3 Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called luminosity in Astronomy.
Spectral flux Φe,ν[8] watt per hertz W/Hz ML2T −2 Radiant flux per unit frequency or wavelength. The latter is commonly measured in W⋅nm−1.
Φe,λ[9] watt per metre W/m MLT−3
Radiant intensity Ie,Ω[10] watt per steradian W/sr ML2T−3 Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity.
Spectral intensity Ie,Ω,ν[8] watt per steradian per hertz W⋅sr−1⋅Hz−1 ML2T−2 Radiant intensity per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅nm−1. This is a directional quantity.
Ie,Ω,λ[9] watt per steradian per metre W⋅sr−1⋅m−1 MLT−3
Radiance Le,Ω[10] watt per steradian per square metre W⋅sr−1⋅m−2 MT−3 Radiant flux emitted, reflected, transmitted or received by a surface, per unit solid angle per unit projected area. This is a directional quantity. This is sometimes also confusingly called "intensity".
Spectral radiance
Specific intensity
Le,Ω,ν[8] watt per steradian per square metre per hertz W⋅sr−1⋅m−2⋅Hz−1 MT−2 Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅m−2⋅nm−1. This is a directional quantity. This is sometimes also confusingly called "spectral intensity".
Le,Ω,λ[9] watt per steradian per square metre, per metre W⋅sr−1⋅m−3 ML−1T−3
Irradiance
Flux density
Ee[7] watt per square metre W/m2 MT−3 Radiant flux received by a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral irradiance
Spectral flux density
Ee,ν[8] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Irradiance of a surface per unit frequency or wavelength. This is sometimes also confusingly called "spectral intensity". Non-SI units of spectral flux density include jansky (1 Jy = 10−26 W⋅m−2⋅Hz−1) and solar flux unit (1 sfu = 10−22 W⋅m−2⋅Hz−1 = 104 Jy).
Ee,λ[9] watt per square metre, per metre W/m3 ML−1T−3
Radiosity Je[7] watt per square metre W/m2 MT−3 Radiant flux leaving (emitted, reflected and transmitted by) a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral radiosity Je,ν[8] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Radiosity of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. This is sometimes also confusingly called "spectral intensity".
Je,λ[9] watt per square metre, per metre W/m3 ML−1T−3
Radiant exitance Me[7] watt per square metre W/m2 MT−3 Radiant flux emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this quantity. This is sometimes also confusingly called "intensity".
Spectral exitance Me,ν[8] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Radiant exitance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. "Spectral emittance" is an old term for this quantity. This is sometimes also confusingly called "spectral intensity".
Me,λ[9] watt per square metre, per metre W/m3 ML−1T−3
Radiant exposure He joule per square metre J/m2 MT−2 Radiant energy received by a surface per unit area, or equivalently irradiance of a surface integrated over time of irradiation. This is sometimes also called "radiant fluence".
Spectral exposure He,ν[8] joule per square metre per hertz J⋅m−2⋅Hz−1 MT−1 Radiant exposure of a surface per unit frequency or wavelength. The latter is commonly measured in J⋅m−2⋅nm−1. This is sometimes also called "spectral fluence".
He,λ[9] joule per square metre, per metre J/m3 ML−1T−2
See also:

Quantity Unit Dimension Notes
Name Symbol[1] Name Symbol
photon energy n 1 count of photons n with energy Qp = hc/λ.[2]
photon flux Φq count per second s−1 T−1 photons per unit time, dn/dt with n = photon number.
also called photon power
photon intensity I count per steradian per second sr−1⋅s−1 T−1 dn/dω
photon radiance Lq count per square metre per steradian per second m−2⋅sr−1⋅s−1 L−2T−1 d2n/(dA cos(θ) dω)
photon irradiance Eq count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
photon exitance M count per square metre per second m−2⋅s−1 L−2T−1 dn/dA
See also:

...

  1. ^ 1.0 1.1 1.2 1.3 Standards organizations recommend that photon quantities be denoted with a suffix "q" (for "quantum") to avoid confusion with radiometric and photometric quantities.
  2. ^ 2.0 2.1 2.2 2.3 The energy of a single photon at wavelength λ is Qp = hc/λ with h = Planck constant and c = velocity of light.
  3. ^ The symbols in this column denote dimensions; "L", "T" and "J" are for length, time and luminous intensity respectively, not the symbols for the units litre, tesla and joule.
  4. ^ Standards organizations recommend that photometric quantities be denoted with a subscript "v" (for "visual") to avoid confusion with radiometric or photon quantities. For example: USA Standard Letter Symbols for Illuminating Engineering USAS Z7.1-1967, Y10.18-1967
  5. ^ 5.0 5.1 5.2 Alternative symbols sometimes seen: W for luminous energy, P or F for luminous flux, and ρ for luminous efficacy of a source.
  6. ^ Standards organizations recommend that radiometric quantities should be denoted with suffix "e" (for "energetic") to avoid confusion with photometric or photon quantities.
  7. ^ 7.0 7.1 7.2 7.3 7.4 Alternative symbols sometimes seen: W or E for radiant energy, P or F for radiant flux, I for irradiance, W for radiant exitance.
  8. ^ 8.0 8.1 8.2 8.3 8.4 8.5 8.6 Spectral quantities given per unit frequency are denoted with suffix "ν" (Greek letter nu, not to be confused with a letter "v", indicating a photometric quantity.)
  9. ^ 9.0 9.1 9.2 9.3 9.4 9.5 9.6 Spectral quantities given per unit wavelength are denoted with suffix "λ".
  10. ^ 10.0 10.1 Directional quantities are denoted with suffix "Ω".

</syntaxhighlight>

Notes

Ideally, the "(Compare)" links would show up on the left or right of the table header, similar to "v d e", so that the cursor would remain in the same position and one could flip back and forth between the tables without window realignment. However, this would require a small change in the {{Navbar-header}} template.

See also



Cite error: <ref> tags exist for a group named "Note", but no corresponding <references group="Note"/> tag was found
Cite error: <ref> tags exist for a group named "notes", but no corresponding <references group="notes"/> tag was found