Whittaker model
In representation theory, a branch of mathematics, the Whittaker model is a realization of a representation of a reductive algebraic group such as GL2 over a finite or local or global field on a space of functions on the group. It is named after E. T. Whittaker even though he never worked in this area, because (Jacquet 1966, 1967) pointed out that for the group SL2(R) some of the functions involved in the representation are Whittaker functions.
Irreducible representations without a Whittaker model are sometimes called "degenerate", and those with a Whittaker model are sometimes called "generic". The representation θ10 of the symplectic group Sp4 is the simplest example of a degenerate representation.
Whittaker models for GL2
If G is the algebraic group GL2 and F is a local field, and τ is a fixed non-trivial character of the additive group of F and π is an irreducible representation of a general linear group G(F), then the Whittaker model for π is a representation π on a space of functions ƒ on G(F) satisfying
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left(\begin{pmatrix}1 & b \\ 0 & 1\end{pmatrix}g\right) = \tau(b)f(g). }
Jacquet & Langlands (1970) used Whittaker models to assign L-functions to admissible representations of GL2.
Whittaker models for GLn
Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} be the general linear group Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{GL}_n} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi} a smooth complex valued non-trivial additive character of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} and the subgroup of consisting of unipotent upper triangular matrices. A non-degenerate character on is of the form
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi(u)=\psi(\alpha_1 x_{12}+\alpha_2 x_{23}+\cdots+\alpha_{n-1}x_{n-1n}),}
for ∈ and non-zero ∈ . If Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (\pi ,V)} is a smooth representation of , a Whittaker functional is a continuous linear functional on such that for all ∈ , ∈ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} . Multiplicity one states that, for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} unitary irreducible, the space of Whittaker functionals has dimension at most equal to one.
Whittaker models for reductive groups
If G is a split reductive group and U is the unipotent radical of a Borel subgroup B, then a Whittaker model for a representation is an embedding of it into the induced (Gelfand–Graev) representation IndG
U(χ), where χ is a non-degenerate character of U, such as the sum of the characters corresponding to simple roots.
See also
- Gelfand–Graev representation, roughly the sum of Whittaker models over a finite field.
- Kirillov model
References
- Jacquet, Hervé (1966), "Une interprétation géométrique et une généralisation P-adique des fonctions de Whittaker en théorie des groupes semi-simples", Comptes Rendus de l'Académie des Sciences, Série A et B, 262: A943–A945, ISSN 0151-0509, MR 0200390
- Jacquet, Hervé (1967), "Fonctions de Whittaker associées aux groupes de Chevalley", Bulletin de la Société Mathématique de France, 95: 243–309, doi:10.24033/bsmf.1654, ISSN 0037-9484, MR 0271275
- Jacquet, H.; Langlands, Robert P. (1970), Automorphic forms on GL(2), Lecture Notes in Mathematics, Vol. 114, vol. 114, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0058988, ISBN 978-3-540-04903-6, MR 0401654, S2CID 122773458
- J. A. Shalika, The multiplicity one theorem for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle GL_n} , The Annals of Mathematics, 2nd. Ser., Vol. 100, No. 2 (1974), 171-193.
Further reading
- Jacquet, Hervé; Shalika, Joseph (1983). "The Whittaker models of induced representations". Pacific Journal of Mathematics. 109 (1): 107–120. doi:10.2140/pjm.1983.109.107. ISSN 0030-8730.